Constrained Statistical Inference

Download Constrained Statistical Inference PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118165632
Total Pages : 560 pages
Book Rating : 4.1/5 (181 download)

DOWNLOAD NOW!


Book Synopsis Constrained Statistical Inference by : Mervyn J. Silvapulle

Download or read book Constrained Statistical Inference written by Mervyn J. Silvapulle and published by John Wiley & Sons. This book was released on 2011-09-15 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date approach to understanding statistical inference Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. This volume enables professionals in these and related fields to master the concepts of statistical inference under inequality constraints and to apply the theory to problems in a variety of areas. Constrained Statistical Inference: Order, Inequality, and Shape Constraints provides a unified and up-to-date treatment of the methodology. It clearly illustrates concepts with practical examples from a variety of fields, focusing on sociology, econometrics, and biostatistics. The authors also discuss a broad range of other inequality-constrained inference problems that do not fit well in the contemplated unified framework, providing a meaningful way for readers to comprehend methodological resolutions. Chapter coverage includes: Population means and isotonic regression Inequality-constrained tests on normal means Tests in general parametric models Likelihood and alternatives Analysis of categorical data Inference on monotone density function, unimodal density function, shape constraints, and DMRL functions Bayesian perspectives, including Stein’s Paradox, shrinkage estimation, and decision theory

Regression Analysis

Download Regression Analysis PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 9780761929048
Total Pages : 286 pages
Book Rating : 4.9/5 (29 download)

DOWNLOAD NOW!


Book Synopsis Regression Analysis by : Richard A. Berk

Download or read book Regression Analysis written by Richard A. Berk and published by SAGE. This book was released on 2004 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: PLEASE UPDATE SAGE INDIA AND SAGE UK ADDRESSES ON IMPRINT PAGE.

Methodological Issues in Psychology and Social Sciences Research

Download Methodological Issues in Psychology and Social Sciences Research PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2832505783
Total Pages : 180 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Methodological Issues in Psychology and Social Sciences Research by : Begoña Espejo

Download or read book Methodological Issues in Psychology and Social Sciences Research written by Begoña Espejo and published by Frontiers Media SA. This book was released on 2023-01-11 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Modes of Parametric Statistical Inference

Download Modes of Parametric Statistical Inference PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471743127
Total Pages : 218 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Modes of Parametric Statistical Inference by : Seymour Geisser

Download or read book Modes of Parametric Statistical Inference written by Seymour Geisser and published by John Wiley & Sons. This book was released on 2006-01-27 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fascinating investigation into the foundations of statistical inference This publication examines the distinct philosophical foundations of different statistical modes of parametric inference. Unlike many other texts that focus on methodology and applications, this book focuses on a rather unique combination of theoretical and foundational aspects that underlie the field of statistical inference. Readers gain a deeper understanding of the evolution and underlying logic of each mode as well as each mode's strengths and weaknesses. The book begins with fascinating highlights from the history of statistical inference. Readers are given historical examples of statistical reasoning used to address practical problems that arose throughout the centuries. Next, the book goes on to scrutinize four major modes of statistical inference: * Frequentist * Likelihood * Fiducial * Bayesian The author provides readers with specific examples and counterexamples of situations and datasets where the modes yield both similar and dissimilar results, including a violation of the likelihood principle in which Bayesian and likelihood methods differ from frequentist methods. Each example is followed by a detailed discussion of why the results may have varied from one mode to another, helping the reader to gain a greater understanding of each mode and how it works. Moreover, the author provides considerable mathematical detail on certain points to highlight key aspects of theoretical development. The author's writing style and use of examples make the text clear and engaging. This book is fundamental reading for graduate-level students in statistics as well as anyone with an interest in the foundations of statistics and the principles underlying statistical inference, including students in mathematics and the philosophy of science. Readers with a background in theoretical statistics will find the text both accessible and absorbing.

The SAGE Handbook of Regression Analysis and Causal Inference

Download The SAGE Handbook of Regression Analysis and Causal Inference PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 1473908353
Total Pages : 425 pages
Book Rating : 4.4/5 (739 download)

DOWNLOAD NOW!


Book Synopsis The SAGE Handbook of Regression Analysis and Causal Inference by : Henning Best

Download or read book The SAGE Handbook of Regression Analysis and Causal Inference written by Henning Best and published by SAGE. This book was released on 2013-12-20 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: ′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.

Statistical Inference for Fractional Diffusion Processes

Download Statistical Inference for Fractional Diffusion Processes PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470975768
Total Pages : 213 pages
Book Rating : 4.4/5 (79 download)

DOWNLOAD NOW!


Book Synopsis Statistical Inference for Fractional Diffusion Processes by : B. L. S. Prakasa Rao

Download or read book Statistical Inference for Fractional Diffusion Processes written by B. L. S. Prakasa Rao and published by John Wiley & Sons. This book was released on 2011-07-05 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are widely used for model building in the social, physical, engineering and life sciences as well as in financial economics. In model building, statistical inference for stochastic processes is of great importance from both a theoretical and an applications point of view. This book deals with Fractional Diffusion Processes and statistical inference for such stochastic processes. The main focus of the book is to consider parametric and nonparametric inference problems for fractional diffusion processes when a complete path of the process over a finite interval is observable. Key features: Introduces self-similar processes, fractional Brownian motion and stochastic integration with respect to fractional Brownian motion. Provides a comprehensive review of statistical inference for processes driven by fractional Brownian motion for modelling long range dependence. Presents a study of parametric and nonparametric inference problems for the fractional diffusion process. Discusses the fractional Brownian sheet and infinite dimensional fractional Brownian motion. Includes recent results and developments in the area of statistical inference of fractional diffusion processes. Researchers and students working on the statistics of fractional diffusion processes and applied mathematicians and statisticians involved in stochastic process modelling will benefit from this book.

Theory of Preliminary Test and Stein-Type Estimation with Applications

Download Theory of Preliminary Test and Stein-Type Estimation with Applications PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471773743
Total Pages : 656 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Theory of Preliminary Test and Stein-Type Estimation with Applications by : A. K. Md. Ehsanes Saleh

Download or read book Theory of Preliminary Test and Stein-Type Estimation with Applications written by A. K. Md. Ehsanes Saleh and published by John Wiley & Sons. This book was released on 2006-04-28 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Preliminary Test and Stein-Type Estimation with Applications provides a com-prehensive account of the theory and methods of estimation in a variety of standard models used in applied statistical inference. It is an in-depth introduction to the estimation theory for graduate students, practitioners, and researchers in various fields, such as statistics, engineering, social sciences, and medical sciences. Coverage of the material is designed as a first step in improving the estimates before applying full Bayesian methodology, while problems at the end of each chapter enlarge the scope of the applications. This book contains clear and detailed coverage of basic terminology related to various topics, including: * Simple linear model; ANOVA; parallelism model; multiple regression model with non-stochastic and stochastic constraints; regression with autocorrelated errors; ridge regression; and multivariate and discrete data models * Normal, non-normal, and nonparametric theory of estimation * Bayes and empirical Bayes methods * R-estimation and U-statistics * Confidence set estimation

Linear Models in Statistics

Download Linear Models in Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470192607
Total Pages : 690 pages
Book Rating : 4.4/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Linear Models in Statistics by : Alvin C. Rencher

Download or read book Linear Models in Statistics written by Alvin C. Rencher and published by John Wiley & Sons. This book was released on 2008-01-07 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Nonlinear Regression

Download Nonlinear Regression PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471725307
Total Pages : 800 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Regression by : George A. F. Seber

Download or read book Nonlinear Regression written by George A. F. Seber and published by John Wiley & Sons. This book was released on 2005-02-25 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of Nonlinear Regression "A very good book and an important one in that it is likely to become a standard reference for all interested in nonlinear regression; and I would imagine that any statistician concerned with nonlinear regression would want a copy on his shelves." –The Statistician "Nonlinear Regression also includes a reference list of over 700 entries. The compilation of this material and cross-referencing of it is one of the most valuable aspects of the book. Nonlinear Regression can provide the researcher unfamiliar with a particular specialty area of nonlinear regression an introduction to that area of nonlinear regression and access to the appropriate references . . . Nonlinear Regression provides by far the broadest discussion of nonlinear regression models currently available and will be a valuable addition to the library of anyone interested in understanding and using such models including the statistical researcher." –Mathematical Reviews

Models for Probability and Statistical Inference

Download Models for Probability and Statistical Inference PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470183403
Total Pages : 466 pages
Book Rating : 4.4/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Models for Probability and Statistical Inference by : James H. Stapleton

Download or read book Models for Probability and Statistical Inference written by James H. Stapleton and published by John Wiley & Sons. This book was released on 2007-12-14 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.

Small Sample Size Solutions

Download Small Sample Size Solutions PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1000761088
Total Pages : 262 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Small Sample Size Solutions by : Rens van de Schoot

Download or read book Small Sample Size Solutions written by Rens van de Schoot and published by Routledge. This book was released on 2020-02-13 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Researchers often have difficulties collecting enough data to test their hypotheses, either because target groups are small or hard to access, or because data collection entails prohibitive costs. Such obstacles may result in data sets that are too small for the complexity of the statistical model needed to answer the research question. This unique book provides guidelines and tools for implementing solutions to issues that arise in small sample research. Each chapter illustrates statistical methods that allow researchers to apply the optimal statistical model for their research question when the sample is too small. This essential book will enable social and behavioral science researchers to test their hypotheses even when the statistical model required for answering their research question is too complex for the sample sizes they can collect. The statistical models in the book range from the estimation of a population mean to models with latent variables and nested observations, and solutions include both classical and Bayesian methods. All proposed solutions are described in steps researchers can implement with their own data and are accompanied with annotated syntax in R. The methods described in this book will be useful for researchers across the social and behavioral sciences, ranging from medical sciences and epidemiology to psychology, marketing, and economics.

Discriminant Analysis and Statistical Pattern Recognition

Download Discriminant Analysis and Statistical Pattern Recognition PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471725285
Total Pages : 552 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Discriminant Analysis and Statistical Pattern Recognition by : Geoffrey J. McLachlan

Download or read book Discriminant Analysis and Statistical Pattern Recognition written by Geoffrey J. McLachlan and published by John Wiley & Sons. This book was released on 2005-02-25 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "For both applied and theoretical statisticians as well as investigators working in the many areas in which relevant use can be made of discriminant techniques, this monograph provides a modern, comprehensive, and systematic account of discriminant analysis, with the focus on the more recent advances in the field." –SciTech Book News ". . . a very useful source of information for any researcher working in discriminant analysis and pattern recognition." –Computational Statistics Discriminant Analysis and Statistical Pattern Recognition provides a systematic account of the subject. While the focus is on practical considerations, both theoretical and practical issues are explored. Among the advances covered are regularized discriminant analysis and bootstrap-based assessment of the performance of a sample-based discriminant rule, and extensions of discriminant analysis motivated by problems in statistical image analysis. The accompanying bibliography contains over 1,200 references.

Spatial Statistics

Download Spatial Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 047172520X
Total Pages : 272 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Spatial Statistics by : Brian D. Ripley

Download or read book Spatial Statistics written by Brian D. Ripley and published by John Wiley & Sons. This book was released on 2005-02-25 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley-Interscience Paperback Series consists of selected booksthat have been made more accessible to consumers in an effort toincrease global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "Books such as this that bring together, clarify, and summarizerecent research can lead to a great increase of interest in thearea. . . . a major achievement in describing many aspects ofspatial data and discussing, with examples, different methods ofanalysis." –Royal Statistical Society "Dr. Ripley’s book is an excellent survey of the spatialstatistical methodology. It is very well illustrated with examples[that] give a clear view of the wide scope of the subject, the wayin which techniques often have to be tailored to particularapplications, and the different sorts of spatial data thatarise." –The Bulletin of the London Mathematics Society Spatial Statistics provides a comprehensive guide to theanalysis of spatial data. Each chapter covers a particular dataformat and the associated class of problems, introducing theory,giving computational suggestions, and providing examples. Methodsare illustrated by computer-drawn figures. The book serves as anintroduction to this rapidly growing research area formathematicians and statisticians, and as a reference to newcomputer methods for researchers in ecology, geology, archaeology,and the earth sciences.

Analysis of Financial Time Series

Download Analysis of Financial Time Series PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471746185
Total Pages : 576 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Analysis of Financial Time Series by : Ruey S. Tsay

Download or read book Analysis of Financial Time Series written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2005-09-15 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides statistical tools and techniques needed to understandtoday's financial markets The Second Edition of this critically acclaimed text provides acomprehensive and systematic introduction to financial econometricmodels and their applications in modeling and predicting financialtime series data. This latest edition continues to emphasizeempirical financial data and focuses on real-world examples.Following this approach, readers will master key aspects offinancial time series, including volatility modeling, neuralnetwork applications, market microstructure and high-frequencyfinancial data, continuous-time models and Ito's Lemma, Value atRisk, multiple returns analysis, financial factor models, andeconometric modeling via computation-intensive methods. The author begins with the basic characteristics of financialtime series data, setting the foundation for the three maintopics: Analysis and application of univariate financial timeseries Return series of multiple assets Bayesian inference in finance methods This new edition is a thoroughly revised and updated text,including the addition of S-Plus® commands and illustrations.Exercises have been thoroughly updated and expanded and include themost current data, providing readers with more opportunities to putthe models and methods into practice. Among the new material addedto the text, readers will find: Consistent covariance estimation under heteroscedasticity andserial correlation Alternative approaches to volatility modeling Financial factor models State-space models Kalman filtering Estimation of stochastic diffusion models The tools provided in this text aid readers in developing adeeper understanding of financial markets through firsthandexperience in working with financial data. This is an idealtextbook for MBA students as well as a reference for researchersand professionals in business and finance.

Mixed Models

Download Mixed Models PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118592999
Total Pages : 768 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Mixed Models by : Eugene Demidenko

Download or read book Mixed Models written by Eugene Demidenko and published by John Wiley & Sons. This book was released on 2013-08-26 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.

Nonparametric Statistical Methods

Download Nonparametric Statistical Methods PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118553292
Total Pages : 872 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Statistical Methods by : Myles Hollander

Download or read book Nonparametric Statistical Methods written by Myles Hollander and published by John Wiley & Sons. This book was released on 2013-11-25 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.

Robust Statistics

Download Robust Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118150686
Total Pages : 502 pages
Book Rating : 4.1/5 (181 download)

DOWNLOAD NOW!


Book Synopsis Robust Statistics by : Frank R. Hampel

Download or read book Robust Statistics written by Frank R. Hampel and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "This is a nice book containing a wealth of information, much ofit due to the authors. . . . If an instructor designing such acourse wanted a textbook, this book would be the best choiceavailable. . . . There are many stimulating exercises, and the bookalso contains an excellent index and an extensive list ofreferences." —Technometrics "[This] book should be read carefully by anyone who isinterested in dealing with statistical models in a realisticfashion." —American Scientist Introducing concepts, theory, and applications, RobustStatistics is accessible to a broad audience, avoidingallusions to high-powered mathematics while emphasizing ideas,heuristics, and background. The text covers the approach based onthe influence function (the effect of an outlier on an estimater,for example) and related notions such as the breakdown point. Italso treats the change-of-variance function, fundamental conceptsand results in the framework of estimation of a single parameter,and applications to estimation of covariance matrices andregression parameters.