Comsol Heat Transfer Models

Download Comsol Heat Transfer Models PDF Online Free

Author :
Publisher : Multiphysics Modeling
ISBN 13 : 9781683922117
Total Pages : 400 pages
Book Rating : 4.9/5 (221 download)

DOWNLOAD NOW!


Book Synopsis Comsol Heat Transfer Models by : Layla S. Mayboudi

Download or read book Comsol Heat Transfer Models written by Layla S. Mayboudi and published by Multiphysics Modeling. This book was released on 2019-10-15 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book guides the reader through the process of model creation for heat transfer analysis with the finite element method. The book describes thermal imaging experiments that demonstrate how such models can be validated. It presents application examples, such as heating water in a kettle, to basement insulation, a heated seat, molten rock, pipe flow, and an innovative extended surface. A companion disc provides the files so models can be run (using COMSOL or other software) in order to observe real-world behavior of the applications. Historical background information is provided to show the progression of heat transfer science and mathematical modeling from the earliest developments to the most recent advances in technology. Features: Includes example models that enable the reader to implement conceptual material in practical scenarios with broad industrial applications Includes companion files with models and geometry files created with COMSOL Multiphysics(R) or imported from a third-party CAD tool.

Heat Transfer Modelling Using COMSOL

Download Heat Transfer Modelling Using COMSOL PDF Online Free

Author :
Publisher : Multiphysics Modeling
ISBN 13 : 9781683921721
Total Pages : 0 pages
Book Rating : 4.9/5 (217 download)

DOWNLOAD NOW!


Book Synopsis Heat Transfer Modelling Using COMSOL by : Layla S. Mayboudi

Download or read book Heat Transfer Modelling Using COMSOL written by Layla S. Mayboudi and published by Multiphysics Modeling. This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fins have been used historically as reliable design features for thermal management, which continues to be an important problem in engineering today. This book develops heat transfer models for progressively complex fin designs. Mathematicians, engineers, and analysts may equally benefit from the content as it provides the reader with numerical and analytical tools to approach general and thermal management heat transfer problems. The main focus is on the COMSOL(R) Multiphysics Heat Transfer module; however, the fundamentals may be applied to other commercial packages such as ANSYS and Abaqus. The content can be utilized in a variety of engineering disciplines including mechanical, aerospace, biomedical, chemical, civil, and electrical, etc. Features: +Includes numerous example models that enable the reader to implement conceptual material in practical scenarios with broad industrial applications +Uses COMSOL Multiphysics(R) version 5.3 in combination with the Heat Transfer Module to set up and carry out the numerical analysis for the models presented in the book +Presents mathematical methods related to the problems +Includes a companion disc with models and custom apps created with COMSOL Application Builder (available by emailing info @ merclearning.com with proof of purchase if e-version)

Multiphysics Modeling Using COMSOL?

Download Multiphysics Modeling Using COMSOL? PDF Online Free

Author :
Publisher : Jones & Bartlett Learning
ISBN 13 : 0763779997
Total Pages : 872 pages
Book Rating : 4.7/5 (637 download)

DOWNLOAD NOW!


Book Synopsis Multiphysics Modeling Using COMSOL? by : Roger Pryor

Download or read book Multiphysics Modeling Using COMSOL? written by Roger Pryor and published by Jones & Bartlett Learning. This book was released on 2011 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphysics Modeling Using COMSOL? rapidly introduces the senior level undergraduate, graduate or professional scientist or engineer to the art and science of computerized modeling for physical systems and devices. It offers a step-by-step modeling methodology through examples that are linked to the Fundamental Laws of Physics through a First Principles Analysis approach. The text explores a breadth of multiphysics models in coordinate systems that range from 1D to 3D and introduces the readers to the numerical analysis modeling techniques employed in the COMSOL? Multiphysics? software. After readers have built and run the examples, they will have a much firmer understanding of the concepts, skills, and benefits acquired from the use of computerized modeling techniques to solve their current technological problems and to explore new areas of application for their particular technological areas of interest.

Heat Transfer Modelling Using COMSOL

Download Heat Transfer Modelling Using COMSOL PDF Online Free

Author :
Publisher :
ISBN 13 : 9781523120383
Total Pages : 200 pages
Book Rating : 4.1/5 (23 download)

DOWNLOAD NOW!


Book Synopsis Heat Transfer Modelling Using COMSOL by : L. S. Mayboudi

Download or read book Heat Transfer Modelling Using COMSOL written by L. S. Mayboudi and published by . This book was released on 2019 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fins have been used historically as reliable design features for thermal management, which continues to be an important problem in engineering today. This book develops heat transfer models for progressively complex fin designs. --

Geometry Creation and Import With COMSOL Multiphysics

Download Geometry Creation and Import With COMSOL Multiphysics PDF Online Free

Author :
Publisher : Mercury Learning and Information
ISBN 13 : 168392214X
Total Pages : 300 pages
Book Rating : 4.6/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Geometry Creation and Import With COMSOL Multiphysics by : Layla S. Mayboudi

Download or read book Geometry Creation and Import With COMSOL Multiphysics written by Layla S. Mayboudi and published by Mercury Learning and Information. This book was released on 2019-09-20 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the geometry creation techniques for use in finite element analysis. Examples are provided as a sequence of fin designs with progressively increasing complexity. A fin was selected as it is a feature widely employed for thermal management. As the content progresses, the reader learns to create or import a geometry into a FEM tool using COMSOL Multiphysics®. The fundamentals may also be applied to other commercial packages such as ANSYS® or AbaqusTM. The content can be utilized in a variety of engineering disciplines including mechanical, aerospace, biomedical, chemical, civil, and electrical. The book provides an overview of the tools available to create and interact with the geometry. It also takes a broader look on the world of geometry, showing how geometry is a fundamental part of nature and how it is interconnected with the world around us. Features: Includes example models that enable the reader to implement conceptual material in practical scenarios with broad industrial applications Provides geometry modeling examples created with built in features of COMSOL Multiphysics® v. 5.4 or imported from other dedicated CAD tools Presents meshing examples and provides practical advice on mesh generation Includes companion files with models and custom applications created with COMSOL Multiphysics® Application Builder.

Modelling Organs, Tissues, Cells and Devices

Download Modelling Organs, Tissues, Cells and Devices PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642548016
Total Pages : 504 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Modelling Organs, Tissues, Cells and Devices by : Socrates Dokos

Download or read book Modelling Organs, Tissues, Cells and Devices written by Socrates Dokos and published by Springer. This book was released on 2017-03-08 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.

Multiphysics Modeling With Finite Element Methods

Download Multiphysics Modeling With Finite Element Methods PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 9813106735
Total Pages : 434 pages
Book Rating : 4.8/5 (131 download)

DOWNLOAD NOW!


Book Synopsis Multiphysics Modeling With Finite Element Methods by : William B J Zimmerman

Download or read book Multiphysics Modeling With Finite Element Methods written by William B J Zimmerman and published by World Scientific Publishing Company. This book was released on 2006-10-25 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite element methods for approximating partial differential equations that arise in science and engineering analysis find widespread application. Numerical analysis tools make the solutions of coupled physics, mechanics, chemistry, and even biology accessible to the novice modeler. Nevertheless, modelers must be aware of the limitations and difficulties in developing numerical models that faithfully represent the system they are modeling.This textbook introduces the intellectual framework for modeling with Comsol Multiphysics, a package which has unique features in representing multiply linked domains with complex geometry, highly coupled and nonlinear equation systems, and arbitrarily complicated boundary, auxiliary, and initial conditions. But with this modeling power comes great opportunities and great perils.Progressively, in the first part of the book the novice modeler develops an understanding of how to build up complicated models piecemeal and test them modularly. The second part of the book introduces advanced analysis techniques. The final part of the book deals with case studies in a broad range of application areas including nonlinear pattern formation, thin film dynamics and heterogeneous catalysis, composite and effective media for heat, mass, conductivity, and dispersion, population balances, tomography, multiphase flow, electrokinetic, microfluidic networks, plasma dynamics, and corrosion chemistry.As a revision of Process Modeling and Simulation with Finite Element Methods, this book uses the very latest features of Comsol Multiphysics. There are new case studies on multiphase flow with phase change, plasma dynamics, electromagnetohydrodynamics, microfluidic mixing, and corrosion. In addition, major improvements to the level set method for multiphase flow to ensure phase conservation is introduced.

Heat Transfer Modelling Using COMSOL

Download Heat Transfer Modelling Using COMSOL PDF Online Free

Author :
Publisher : Stylus Publishing, LLC
ISBN 13 : 1683921739
Total Pages : 260 pages
Book Rating : 4.6/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Heat Transfer Modelling Using COMSOL by : Layla S. Mayboudi

Download or read book Heat Transfer Modelling Using COMSOL written by Layla S. Mayboudi and published by Stylus Publishing, LLC. This book was released on 2018-07-09 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fins have been used historically as reliable design features for thermal management, which continues to be an important problem in engineering today. This book develops heat transfer models for progressively complex fin designs. Mathematicians, engineers, and analysts may equally benefit from the content as it provides the reader with numerical and analytical tools to approach general and thermal management heat transfer problems. The main focus is on the COMSOL® Multiphysics Heat Transfer module; however, the fundamentals may be applied to other commercial packages such as ANSYS and Abaqus. The content can be utilized in a variety of engineering disciplines including mechanical, aerospace, biomedical, chemical, civil, and electrical, etc. Features: +Includes numerous example models that enable the reader to implement conceptual material in practical scenarios with broad industrial applications +Uses COMSOL Multiphysics® version 5.3 in combination with the Heat Transfer Module to set up and carry out the numerical analysis for the models presented in the book +Presents mathematical methods related to the problems +Includes a companion disc with models and custom apps created with COMSOL Application Builder (available by emailing info @ merclearning.com with proof of purchase if e-version)

Multiphysics Simulation

Download Multiphysics Simulation PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1447156404
Total Pages : 225 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Multiphysics Simulation by : Ercan M. Dede

Download or read book Multiphysics Simulation written by Ercan M. Dede and published by Springer. This book was released on 2014-05-28 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation, with a specific focus on electromechanical systems as the target application. Features: introduces the concept of design via simulation, along with the role of multiphysics simulation in today’s engineering environment; discusses the importance of structural optimization techniques in the design and development of electromechanical systems; provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, magnetic components, RF components, actuators, and motors; reviews the governing equations for the simulation of related multiphysics problems; outlines relevant (topology and parametric size) optimization methods for electromechanical systems; describes in detail several multiphysics simulation and optimization example studies in both two and three dimensions, with sample numerical code.

Radiative Heat Transfer

Download Radiative Heat Transfer PDF Online Free

Author :
Publisher : McGraw-Hill Science, Engineering & Mathematics
ISBN 13 : 9780070426757
Total Pages : 0 pages
Book Rating : 4.4/5 (267 download)

DOWNLOAD NOW!


Book Synopsis Radiative Heat Transfer by : Michael F. Modest

Download or read book Radiative Heat Transfer written by Michael F. Modest and published by McGraw-Hill Science, Engineering & Mathematics. This book was released on 1993 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a comprehensive treatment of heat transfer. In addition to the standard topics usually covered, it also includes a number of modern state-of-the-art topics including: radiative properties of particles, generation of P-N approximation and collimated irradiation.

Introduction to Chemical Engineering Computing

Download Introduction to Chemical Engineering Computing PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118888375
Total Pages : 502 pages
Book Rating : 4.1/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Chemical Engineering Computing by : Bruce A. Finlayson

Download or read book Introduction to Chemical Engineering Computing written by Bruce A. Finlayson and published by John Wiley & Sons. This book was released on 2014-03-05 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Step-by-step instructions enable chemical engineers to master key software programs and solve complex problems Today, both students and professionals in chemical engineering must solve increasingly complex problems dealing with refineries, fuel cells, microreactors, and pharmaceutical plants, to name a few. With this book as their guide, readers learn to solve these problems using their computers and Excel, MATLAB, Aspen Plus, and COMSOL Multiphysics. Moreover, they learn how to check their solutions and validate their results to make sure they have solved the problems correctly. Now in its Second Edition, Introduction to Chemical Engineering Computing is based on the author’s firsthand teaching experience. As a result, the emphasis is on problem solving. Simple introductions help readers become conversant with each program and then tackle a broad range of problems in chemical engineering, including: Equations of state Chemical reaction equilibria Mass balances with recycle streams Thermodynamics and simulation of mass transfer equipment Process simulation Fluid flow in two and three dimensions All the chapters contain clear instructions, figures, and examples to guide readers through all the programs and types of chemical engineering problems. Problems at the end of each chapter, ranging from simple to difficult, allow readers to gradually build their skills, whether they solve the problems themselves or in teams. In addition, the book’s accompanying website lists the core principles learned from each problem, both from a chemical engineering and a computational perspective. Covering a broad range of disciplines and problems within chemical engineering, Introduction to Chemical Engineering Computing is recommended for both undergraduate and graduate students as well as practicing engineers who want to know how to choose the right computer software program and tackle almost any chemical engineering problem.

Heat Transfer and Fluid Flow in Biological Processes

Download Heat Transfer and Fluid Flow in Biological Processes PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0124079008
Total Pages : 428 pages
Book Rating : 4.1/5 (24 download)

DOWNLOAD NOW!


Book Synopsis Heat Transfer and Fluid Flow in Biological Processes by : Sid M. Becker

Download or read book Heat Transfer and Fluid Flow in Biological Processes written by Sid M. Becker and published by Academic Press. This book was released on 2014-12-31 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid flow and heat transfer in biomedical technology Covers topics such as electrokinetic transport, electroporation of cells and tissue dialysis, inert solute transport (insulin), thermal ablation of cancerous tissue, respiratory therapies, and associated medical technologies Reviews the most recent advances in modeling techniques

Heat Transfer

Download Heat Transfer PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119467403
Total Pages : 612 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Heat Transfer by : Adrian Bejan

Download or read book Heat Transfer written by Adrian Bejan and published by John Wiley & Sons. This book was released on 2022-04-05 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: HEAT TRANSFER Provides authoritative coverage of the fundamentals of heat transfer, written by one of the most cited authors in all of Engineering Heat Transfer presents the fundamentals of the generation, use, conversion, and exchange of heat between physical systems. A pioneer in establishing heat transfer as a pillar of the modern thermal sciences, Professor Adrian Bejan presents the fundamental concepts and problem-solving methods of the discipline, predicts the evolution of heat transfer configurations, the principles of thermodynamics, and more. Building upon his classic 1993 book Heat Transfer, the author maintains his straightforward scientific approach to teaching essential developments such as Fourier conduction, fins, boundary layer theory, duct flow, scale analysis, and the structure of turbulence. In this new volume, Bejan explores topics and research developments that have emerged during the past decade, including the designing of convective flow and heat and mass transfer, the crucial relationship between configuration and performance, and new populations of configurations such as tapered ducts, plates with multi-scale features, and dendritic fins. Heat Transfer: Evolution, Design and Performance: Covers thermodynamics principles and establishes performance and evolution as fundamental concepts in thermal sciences Demonstrates how principles of physics predict a future with economies of scale, multi-scale design, vascularization, and hierarchical distribution of many small features Explores new work on conduction architecture, convection with nanofluids, boiling and condensation on designed surfaces, and resonance of natural circulation in enclosures Includes numerous examples, problems with solutions, and access to a companion website Heat Transfer: Evolution, Design and Performance is essential reading for undergraduate and graduate students in mechanical and chemical engineering, and for all engineers, physicists, biologists, and earth scientists.

Multiphysics Modeling Using COMSOL 5 and MATLAB

Download Multiphysics Modeling Using COMSOL 5 and MATLAB PDF Online Free

Author :
Publisher : Mercury Learning and Information
ISBN 13 : 1683925882
Total Pages : 743 pages
Book Rating : 4.6/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Multiphysics Modeling Using COMSOL 5 and MATLAB by : Roger W. Pryor

Download or read book Multiphysics Modeling Using COMSOL 5 and MATLAB written by Roger W. Pryor and published by Mercury Learning and Information. This book was released on 2021-12-03 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: COMSOL 5 and MATLAB are valuable software modeling tools for engineers and scientists. This updated edition includes five new models and explores a wide range of models in coordinate systems from 0D to 3D, introducing the numerical analysis techniques employed in COMSOL 5.6 and MATLAB software. The text presents electromagnetic, electronic, optical, thermal physics, and biomedical models as examples. It presents the fundamental concepts in the models and the step-by-step instructions needed to build each model. The companion files include all the built models for each step-by-step example presented in the text and the related animations, as specified. The book is designed to introduce modeling to an experienced engineer or can also be used for upper level undergraduate or graduate courses. FEATURES: Focuses on COMSOL 5.x and MATLAB models that demonstrate the use of concepts for later application in engineering, science, medicine, and biophysics for the development of devices and systems Includes companion files with executable copies of each model and related animations Includes detailed discussions of possible modeling errors and results Uses a step-by-step modeling methodology linked to the Fundamental Laws of Physics. The companion files are also available online by emailing the publisher with proof of purchase at [email protected].

Chemical Engineering

Download Chemical Engineering PDF Online Free

Author :
Publisher : Pergamon
ISBN 13 :
Total Pages : 500 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Chemical Engineering by : John Metcalfe Coulson

Download or read book Chemical Engineering written by John Metcalfe Coulson and published by Pergamon. This book was released on 1977 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Applied Computational Fluid Dynamics and Turbulence Modeling

Download Applied Computational Fluid Dynamics and Turbulence Modeling PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030286916
Total Pages : 316 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Applied Computational Fluid Dynamics and Turbulence Modeling by : Sal Rodriguez

Download or read book Applied Computational Fluid Dynamics and Turbulence Modeling written by Sal Rodriguez and published by Springer Nature. This book was released on 2019-12-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique text provides engineering students and practicing professionals with a comprehensive set of practical, hands-on guidelines and dozens of step-by-step examples for performing state-of-the-art, reliable computational fluid dynamics (CFD) and turbulence modeling. Key CFD and turbulence programs are included as well. The text first reviews basic CFD theory, and then details advanced applied theories for estimating turbulence, including new algorithms created by the author. The book gives practical advice on selecting appropriate turbulence models and presents best CFD practices for modeling and generating reliable simulations. The author gathered and developed the book’s hundreds of tips, tricks, and examples over three decades of research and development at three national laboratories and at the University of New Mexico—many in print for the first time in this book. The book also places a strong emphasis on recent CFD and turbulence advancements found in the literature over the past five to 10 years. Readers can apply the author’s advice and insights whether using commercial or national laboratory software such as ANSYS Fluent, STAR-CCM, COMSOL, Flownex, SimScale, OpenFOAM, Fuego, KIVA, BIGHORN, or their own computational tools. Applied Computational Fluid Dynamics and Turbulence Modeling is a practical, complementary companion for academic CFD textbooks and senior project courses in mechanical, civil, chemical, and nuclear engineering; senior undergraduate and graduate CFD and turbulence modeling courses; and for professionals developing commercial and research applications.

Modelling in Science and Engineering

Download Modelling in Science and Engineering PDF Online Free

Author :
Publisher :
ISBN 13 : 9781795702348
Total Pages : 255 pages
Book Rating : 4.7/5 (23 download)

DOWNLOAD NOW!


Book Synopsis Modelling in Science and Engineering by : Marcus Inácio

Download or read book Modelling in Science and Engineering written by Marcus Inácio and published by . This book was released on 2019-06-21 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives the reader a brief introduction to the COMSOL Multiphysics software tool. Building COMSOL Multiphysics models in 2D or 3D will help students to consolidate their skills by applying basic theory to the real modelling of tasks that in the recent past would require months of programming and dedicated projects to solve a single problem. The examples illustrated in this book include modelling of heat transfer, the migration of a radioactive species in a channel using the Navier-Stokes equations and a chemical heterogenous reactor. These are problems that tend to be rather abstract until such time as a student applies these fundamental equations in practice. Advanced coupling between phenomena in fields such as electromagnetics with others such as heat transfer and computational fluid flow is made easy in COMSOL Multiphysics. A short introduction to the basics, concepts and techniques will allow the reader to progress rapidly and start developing his/her own models. In the second part of this book, some of the models developed in the first part are used to create model applications that can even run on a mobile phone. About the authors: António de Campos Pereira, PhD. in Physics, is an author and consultant. He is a retired researcher from the Dept. of Physics at Stockholm University. Prof. Isabel Paiva, Ph.D. in Chemical Engeneering, is a researcher at C2TN at IST, the School of Engineering of the University of Lisbon. Marcus Inácio has a B.Sc. in Electrotechnical Engineering and is specialising in the field of Medical Physics at KTH, the Royal Institute of Technology in Stockholm, Sweden. Hugo de Campos Pereira is an environmental engineer from Uppsala University and a Ph.D. student specialising in the sorption of highly fluorinated compounds in soils at the Department of Soil and Environment at SLU, the Swedish University of Agricultural Sciences in Uppsala, Sweden.