Computing with Data

Download Computing with Data PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783319981482
Total Pages : 0 pages
Book Rating : 4.9/5 (814 download)

DOWNLOAD NOW!


Book Synopsis Computing with Data by : Guy Lebanon

Download or read book Computing with Data written by Guy Lebanon and published by Springer. This book was released on 2018-12-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces basic computing skills designed for industry professionals without a strong computer science background. Written in an easily accessible manner, and accompanied by a user-friendly website, it serves as a self-study guide to survey data science and data engineering for those who aspire to start a computing career, or expand on their current roles, in areas such as applied statistics, big data, machine learning, data mining, and informatics. The authors draw from their combined experience working at software and social network companies, on big data products at several major online retailers, as well as their experience building big data systems for an AI startup. Spanning from the basic inner workings of a computer to advanced data manipulation techniques, this book opens doors for readers to quickly explore and enhance their computing knowledge. Computing with Data comprises a wide range of computational topics essential for data scientists, analysts, and engineers, providing them with the necessary tools to be successful in any role that involves computing with data. The introduction is self-contained, and chapters progress from basic hardware concepts to operating systems, programming languages, graphing and processing data, testing and programming tools, big data frameworks, and cloud computing. The book is fashioned with several audiences in mind. Readers without a strong educational background in CS--or those who need a refresher--will find the chapters on hardware, operating systems, and programming languages particularly useful. Readers with a strong educational background in CS, but without significant industry background, will find the following chapters especially beneficial: learning R, testing, programming, visualizing and processing data in Python and R, system design for big data, data stores, and software craftsmanship.

Parallel Computing for Data Science

Download Parallel Computing for Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466587032
Total Pages : 340 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Parallel Computing for Data Science by : Norman Matloff

Download or read book Parallel Computing for Data Science written by Norman Matloff and published by CRC Press. This book was released on 2015-06-04 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is one of the first parallel computing books to focus exclusively on parallel data structures, algorithms, software tools, and applications in data science. The book prepares readers to write effective parallel code in various languages and learn more about different R packages and other tools. It covers the classic n observations, p variables matrix format and common data structures. Many examples illustrate the range of issues encountered in parallel programming.

Soft Computing in Data Science

Download Soft Computing in Data Science PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811673349
Total Pages : 450 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Soft Computing in Data Science by : Azlinah Mohamed

Download or read book Soft Computing in Data Science written by Azlinah Mohamed and published by Springer Nature. This book was released on 2021-10-28 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 6th International Conference on Soft Computing in Data Science, SCDS 2021, which was held virtually in November 2021. The 31 revised full papers presented were carefully reviewed and selected from 79 submissions. The papers are organized in topical sections on ​​AI techniques and applications; data analytics and technologies; data mining and image processing; machine & statistical learning.

Nature Inspired Computing for Data Science

Download Nature Inspired Computing for Data Science PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030338207
Total Pages : 303 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Nature Inspired Computing for Data Science by : Minakhi Rout

Download or read book Nature Inspired Computing for Data Science written by Minakhi Rout and published by Springer Nature. This book was released on 2019-11-26 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the current research and concepts in data science and how these can be addressed using different nature-inspired optimization techniques. Focusing on various data science problems, including classification, clustering, forecasting, and deep learning, it explores how researchers are using nature-inspired optimization techniques to find solutions to these problems in domains such as disease analysis and health care, object recognition, vehicular ad-hoc networking, high-dimensional data analysis, gene expression analysis, microgrids, and deep learning. As such it provides insights and inspiration for researchers to wanting to employ nature-inspired optimization techniques in their own endeavors.

Data Science and Big Data Computing

Download Data Science and Big Data Computing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319318616
Total Pages : 332 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Big Data Computing by : Zaigham Mahmood

Download or read book Data Science and Big Data Computing written by Zaigham Mahmood and published by Springer. This book was released on 2016-07-05 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by authoritative researchers and practitioners from around the world, discussing research developments and emerging trends, presenting case studies on helpful frameworks and innovative methodologies, and suggesting best practices for efficient and effective data analytics. Features: reviews a framework for fast data applications, a technique for complex event processing, and agglomerative approaches for the partitioning of networks; introduces a unified approach to data modeling and management, and a distributed computing perspective on interfacing physical and cyber worlds; presents techniques for machine learning for big data, and identifying duplicate records in data repositories; examines enabling technologies and tools for data mining; proposes frameworks for data extraction, and adaptive decision making and social media analysis.

Advances in Computing and Data Sciences

Download Advances in Computing and Data Sciences PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811566348
Total Pages : 532 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Advances in Computing and Data Sciences by : Mayank Singh

Download or read book Advances in Computing and Data Sciences written by Mayank Singh and published by Springer Nature. This book was released on 2020-07-17 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the post-conference proceedings of the 4th International Conference on Advances in Computing and Data Sciences, ICACDS 2020, held in Valletta, Malta, in April 2020.* The 46 full papers were carefully reviewed and selected from 354 submissions. The papers are centered around topics like advanced computing, data sciences, distributed systems organizing principles, development frameworks and environments, software verification and validation, computational complexity and cryptography, machine learning theory, database theory, probabilistic representations. * The conference was held virtually due to the COVID-19 pandemic.

Recent Trends in Data Science and Soft Computing

Download Recent Trends in Data Science and Soft Computing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319990071
Total Pages : 1133 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Recent Trends in Data Science and Soft Computing by : Faisal Saeed

Download or read book Recent Trends in Data Science and Soft Computing written by Faisal Saeed and published by Springer. This book was released on 2018-09-08 with total page 1133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 3rd International Conference of Reliable Information and Communication Technology 2018 (IRICT 2018), which was held in Kuala Lumpur, Malaysia, on July 23–24, 2018. The main theme of the conference was “Data Science, AI and IoT Trends for the Fourth Industrial Revolution.” A total of 158 papers were submitted to the conference, of which 103 were accepted and considered for publication in this book. Several hot research topics are covered, including Advances in Data Science and Big Data Analytics, Artificial Intelligence and Soft Computing, Business Intelligence, Internet of Things (IoT) Technologies and Applications, Intelligent Communication Systems, Advances in Computer Vision, Health Informatics, Reliable Cloud Computing Environments, Recent Trends in Knowledge Management, Security Issues in the Cyber World, and Advances in Information Systems Research, Theories and Methods.

Human-Centered Data Science

Download Human-Centered Data Science PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262367599
Total Pages : 201 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Human-Centered Data Science by : Cecilia Aragon

Download or read book Human-Centered Data Science written by Cecilia Aragon and published by MIT Press. This book was released on 2022-03-01 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of large datasets. Human-centered data science is a new interdisciplinary field that draws from human-computer interaction, social science, statistics, and computational techniques. This book, written by founders of the field, introduces best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of very large datasets. It offers a brief and accessible overview of many common statistical and algorithmic data science techniques, explains human-centered approaches to data science problems, and presents practical guidelines and real-world case studies to help readers apply these methods. The authors explain how data scientists’ choices are involved at every stage of the data science workflow—and show how a human-centered approach can enhance each one, by making the process more transparent, asking questions, and considering the social context of the data. They describe how tools from social science might be incorporated into data science practices, discuss different types of collaboration, and consider data storytelling through visualization. The book shows that data science practitioners can build rigorous and ethical algorithms and design projects that use cutting-edge computational tools and address social concerns.

Computational Statistics in Data Science

Download Computational Statistics in Data Science PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119561086
Total Pages : 672 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Computational Statistics in Data Science by : Richard A. Levine

Download or read book Computational Statistics in Data Science written by Richard A. Levine and published by John Wiley & Sons. This book was released on 2022-03-23 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ein unverzichtbarer Leitfaden bei der Anwendung computergestützter Statistik in der modernen Datenwissenschaft In Computational Statistics in Data Science präsentiert ein Team aus bekannten Mathematikern und Statistikern eine fundierte Zusammenstellung von Konzepten, Theorien, Techniken und Praktiken der computergestützten Statistik für ein Publikum, das auf der Suche nach einem einzigen, umfassenden Referenzwerk für Statistik in der modernen Datenwissenschaft ist. Das Buch enthält etliche Kapitel zu den wesentlichen konkreten Bereichen der computergestützten Statistik, in denen modernste Techniken zeitgemäß und verständlich dargestellt werden. Darüber hinaus bietet Computational Statistics in Data Science einen kostenlosen Zugang zu den fertigen Einträgen im Online-Nachschlagewerk Wiley StatsRef: Statistics Reference Online. Außerdem erhalten die Leserinnen und Leser: * Eine gründliche Einführung in die computergestützte Statistik mit relevanten und verständlichen Informationen für Anwender und Forscher in verschiedenen datenintensiven Bereichen * Umfassende Erläuterungen zu aktuellen Themen in der Statistik, darunter Big Data, Datenstromverarbeitung, quantitative Visualisierung und Deep Learning Das Werk eignet sich perfekt für Forscher und Wissenschaftler sämtlicher Fachbereiche, die Techniken der computergestützten Statistik auf einem gehobenen oder fortgeschrittenen Niveau anwenden müssen. Zudem gehört Computational Statistics in Data Science in das Bücherregal von Wissenschaftlern, die sich mit der Erforschung und Entwicklung von Techniken der computergestützten Statistik und statistischen Grafiken beschäftigen.

Applications of Machine Learning in Big-Data Analytics and Cloud Computing

Download Applications of Machine Learning in Big-Data Analytics and Cloud Computing PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000793559
Total Pages : 346 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Applications of Machine Learning in Big-Data Analytics and Cloud Computing by : Subhendu Kumar Pani

Download or read book Applications of Machine Learning in Big-Data Analytics and Cloud Computing written by Subhendu Kumar Pani and published by CRC Press. This book was released on 2022-09-01 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine times in volume in just five years and by 2030 its volume may reach a staggering 65 trillion gigabytes. This explosion of data has led to opportunities and transformation in various areas such as healthcare, enterprises, industrial manufacturing and transportation. New Cloud Computing and Big Data tools endow researchers and analysts with novel techniques and opportunities to collect, manage and analyze the vast quantities of data. In Cloud and Big Data Analytics, the two areas of Swarm Intelligence and Deep Learning are a developing type of Machine Learning techniques that show enormous potential for solving complex business problems. Deep Learning enables computers to analyze large quantities of unstructured and binary data and to deduce relationships without requiring specific models or programming instructions. This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science. The book will describe the concepts necessary to understand current Machine Learning issues, challenges and possible solutions as well as upcoming trends in Big Data Analytics.

Data Science

Download Data Science PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262535432
Total Pages : 282 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Data Science by : John D. Kelleher

Download or read book Data Science written by John D. Kelleher and published by MIT Press. This book was released on 2018-04-13 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing

Download Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030756572
Total Pages : 443 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing by : Sujata Dash

Download or read book Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing written by Sujata Dash and published by Springer Nature. This book was released on 2021-11-05 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book plays a significant role in improvising human life to a great extent. The new applications of soft computing can be regarded as an emerging field in computer science, automatic control engineering, medicine, biology application, natural environmental engineering, and pattern recognition. Now, the exemplar model for soft computing is human brain. The use of various techniques of soft computing is nowadays successfully implemented in many domestic, commercial, and industrial applications due to the low-cost and very high-performance digital processors and also the decline price of the memory chips. This is the main reason behind the wider expansion of soft computing techniques and its application areas. These computing methods also play a significant role in the design and optimization in diverse engineering disciplines. With the influence and the development of the Internet of things (IoT) concept, the need for using soft computing techniques has become more significant than ever. In general, soft computing methods are closely similar to biological processes than traditional techniques, which are mostly based on formal logical systems, such as sentential logic and predicate logic, or rely heavily on computer-aided numerical analysis. Soft computing techniques are anticipated to complement each other. The aim of these techniques is to accept imprecision, uncertainties, and approximations to get a rapid solution. However, recent advancements in representation soft computing algorithms (fuzzy logic,evolutionary computation, machine learning, and probabilistic reasoning) generate a more intelligent and robust system providing a human interpretable, low-cost, approximate solution. Soft computing-based algorithms have demonstrated great performance to a variety of areas including multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, biomedical and health informatics, etc. Soft computing approaches such as genetic programming (GP), support vector machine–firefly algorithm (SVM-FFA), artificial neural network (ANN), and support vector machine–wavelet (SVM–Wavelet) have emerged as powerful computational models. These have also shown significant success in dealing with massive data analysis for large number of applications. All the researchers and practitioners will be highly benefited those who are working in field of computer engineering, medicine, biology application, signal processing, and mechanical engineering. This book is a good collection of state-of-the-art approaches for soft computing-based applications to various engineering fields. It is very beneficial for the new researchers and practitioners working in the field to quickly know the best performing methods. They would be able to compare different approaches and can carry forward their research in the most important area of research which has direct impact on betterment of the human life and health. This book is very useful because there is no book in the market which provides a good collection of state-of-the-art methods of soft computing-based models for multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, and biomedical and health informatics.

The Data Science Design Manual

Download The Data Science Design Manual PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319554441
Total Pages : 456 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis The Data Science Design Manual by : Steven S. Skiena

Download or read book The Data Science Design Manual written by Steven S. Skiena and published by Springer. This book was released on 2017-07-01 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)

Foundations of Data Science

Download Foundations of Data Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108617360
Total Pages : 433 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Data Science by : Avrim Blum

Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.

High-Performance Big Data Computing

Download High-Performance Big Data Computing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262369427
Total Pages : 275 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis High-Performance Big Data Computing by : Dhabaleswar K. Panda

Download or read book High-Performance Big Data Computing written by Dhabaleswar K. Panda and published by MIT Press. This book was released on 2022-08-02 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth overview of an emerging field that brings together high-performance computing, big data processing, and deep lLearning. Over the last decade, the exponential explosion of data known as big data has changed the way we understand and harness the power of data. The emerging field of high-performance big data computing, which brings together high-performance computing (HPC), big data processing, and deep learning, aims to meet the challenges posed by large-scale data processing. This book offers an in-depth overview of high-performance big data computing and the associated technical issues, approaches, and solutions. The book covers basic concepts and necessary background knowledge, including data processing frameworks, storage systems, and hardware capabilities; offers a detailed discussion of technical issues in accelerating big data computing in terms of computation, communication, memory and storage, codesign, workload characterization and benchmarking, and system deployment and management; and surveys benchmarks and workloads for evaluating big data middleware systems. It presents a detailed discussion of big data computing systems and applications with high-performance networking, computing, and storage technologies, including state-of-the-art designs for data processing and storage systems. Finally, the book considers some advanced research topics in high-performance big data computing, including designing high-performance deep learning over big data (DLoBD) stacks and HPC cloud technologies.

Advances in Computing and Data Sciences

Download Advances in Computing and Data Sciences PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030814629
Total Pages : 771 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Advances in Computing and Data Sciences by : Mayank Singh

Download or read book Advances in Computing and Data Sciences written by Mayank Singh and published by Springer Nature. This book was released on 2021-10-22 with total page 771 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume book constitutes the post-conference proceedings of the 5th International Conference on Advances in Computing and Data Sciences, ICACDS 2021, held in Nashik, India, in April 2021.* The 103 full papers were carefully reviewed and selected from 781 submissions. The papers in Part I and II are centered around topics like distributed systems organizing principles, development frameworks and environments, software verification and validation, computational complexity and cryptography, machine learning theory, database theory, probabilistic representations database management system engines, data mining, information retrieval query processing, database and storage security, ubiquitous and mobile computing, parallel computing methodologies, and others. *The conference was held virtually due to the COVID-19 pandemic.

Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics

Download Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1799841871
Total Pages : 334 pages
Book Rating : 4.7/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics by : Taser, Pelin Yildirim

Download or read book Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics written by Taser, Pelin Yildirim and published by IGI Global. This book was released on 2021-11-05 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: The internet of things (IoT) has emerged to address the need for connectivity and seamless integration with other devices as well as big data platforms for analytics. However, there are challenges that IoT-based applications face including design and implementation issues; connectivity problems; data gathering, storing, and analyzing in cloud-based environments; and IoT security and privacy issues. Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics is a critical reference source that provides theoretical frameworks and research findings on IoT and big data integration. Highlighting topics that include wearable sensors, machine learning, machine intelligence, and mobile computing, this book serves professionals who want to improve their understanding of the strategic role of trust at different levels of the information and knowledge society. It is therefore of most value to data scientists, computer scientists, data analysts, IT specialists, academicians, professionals, researchers, and students working in the field of information and knowledge management in various disciplines that include but are not limited to information and communication sciences, administrative sciences and management, education, sociology, computer science, etc. Moreover, the book provides insights and supports executives concerned with the management of expertise, knowledge, information, and organizational development in different types of work communities and environments.