Computational Learning Approaches to Data Analytics in Biomedical Applications

Download Computational Learning Approaches to Data Analytics in Biomedical Applications PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128144831
Total Pages : 312 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Computational Learning Approaches to Data Analytics in Biomedical Applications by : Khalid Al-Jabery

Download or read book Computational Learning Approaches to Data Analytics in Biomedical Applications written by Khalid Al-Jabery and published by Academic Press. This book was released on 2019-11-20 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained. - Includes an overview of data analytics in biomedical applications and current challenges - Updates on the latest research in supervised learning algorithms and applications, clustering algorithms and cluster validation indices - Provides complete coverage of computational and statistical analysis tools for biomedical data analysis - Presents hands-on training on the use of Python libraries, MATLAB® tools, WEKA, SAP-HANA and R/Bioconductor

Data Analytics in Biomedical Engineering and Healthcare

Download Data Analytics in Biomedical Engineering and Healthcare PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128193158
Total Pages : 298 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Data Analytics in Biomedical Engineering and Healthcare by : Kun Chang Lee

Download or read book Data Analytics in Biomedical Engineering and Healthcare written by Kun Chang Lee and published by Academic Press. This book was released on 2020-10-18 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. - Examines the development and application of data analytics applications in biomedical data - Presents innovative classification and regression models for predicting various diseases - Discusses genome structure prediction using predictive modeling - Shows readers how to develop clinical decision support systems - Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks

Handbook of Data Science Approaches for Biomedical Engineering

Download Handbook of Data Science Approaches for Biomedical Engineering PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128183195
Total Pages : 320 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Data Science Approaches for Biomedical Engineering by : Valentina Emilia Balas

Download or read book Handbook of Data Science Approaches for Biomedical Engineering written by Valentina Emilia Balas and published by Academic Press. This book was released on 2019-11-13 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications

Download Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000533972
Total Pages : 332 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications by : Om Prakash Jena

Download or read book Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications written by Om Prakash Jena and published by CRC Press. This book was released on 2022-02-25 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications introduces and explores a variety of schemes designed to empower, enhance, and represent multi-institutional and multi-disciplinary machine learning (ML) and deep learning (DL) research in healthcare paradigms. Serving as a unique compendium of existing and emerging ML/DL paradigms for the healthcare sector, this book demonstrates the depth, breadth, complexity, and diversity of this multi-disciplinary area. It provides a comprehensive overview of ML/DL algorithms and explores the related use cases in enterprises such as computer-aided medical diagnostics, drug discovery and development, medical imaging, automation, robotic surgery, electronic smart records creation, outbreak prediction, medical image analysis, and radiation treatments. This book aims to endow different communities with the innovative advances in theory, analytical results, case studies, numerical simulation, modeling, and computational structuring in the field of ML/DL models for healthcare applications. It will reveal different dimensions of ML/DL applications and will illustrate their use in the solution of assorted real-world biomedical and healthcare problems. Features: Covers the fundamentals of ML and DL in the context of healthcare applications Discusses various data collection approaches from various sources and how to use them in ML/DL models Integrates several aspects of AI-based computational intelligence such as ML and DL from diversified perspectives which describe recent research trends and advanced topics in the field Explores the current and future impacts of pandemics and risk mitigation in healthcare with advanced analytics Emphasizes feature selection as an important step in any accurate model simulation where ML/DL methods are used to help train the system and extract the positive solution implicitly This book is a valuable source of information for researchers, scientists, healthcare professionals, programmers, and graduate-level students interested in understanding the applications of ML/DL in healthcare scenarios. Dr. Om Prakash Jena is an Assistant Professor in the Department of Computer Science, Ravenshaw University, Cuttack, Odisha, India. Dr. Bharat Bhushan is an Assistant Professor of Department of Computer Science and Engineering (CSE) at the School of Engineering and Technology, Sharda University, Greater Noida, India. Dr. Utku Kose is an Associate Professor in Suleyman Demirel University, Turkey.

Practical Machine Learning for Data Analysis Using Python

Download Practical Machine Learning for Data Analysis Using Python PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128213809
Total Pages : 536 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Practical Machine Learning for Data Analysis Using Python by : Abdulhamit Subasi

Download or read book Practical Machine Learning for Data Analysis Using Python written by Abdulhamit Subasi and published by Academic Press. This book was released on 2020-06-05 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features

Leveraging Biomedical and Healthcare Data

Download Leveraging Biomedical and Healthcare Data PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 012809561X
Total Pages : 228 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Leveraging Biomedical and Healthcare Data by : Firas Kobeissy

Download or read book Leveraging Biomedical and Healthcare Data written by Firas Kobeissy and published by Academic Press. This book was released on 2018-11-23 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leveraging Biomedical and Healthcare Data: Semantics, Analytics and Knowledge provides an overview of the approaches used in semantic systems biology, introduces novel areas of its application, and describes step-wise protocols for transforming heterogeneous data into useful knowledge that can influence healthcare and biomedical research. Given the astronomical increase in the number of published reports, papers, and datasets over the last few decades, the ability to curate this data has become a new field of biomedical and healthcare research. This book discusses big data text-based mining to better understand the molecular architecture of diseases and to guide health care decision. It will be a valuable resource for bioinformaticians and members of several areas of the biomedical field who are interested in understanding more about how to process and apply great amounts of data to improve their research. Includes at each section resource pages containing a list of available curated raw and processed data that can be used by researchers in the field Provides demonstrative and relevant examples that serve as a general tutorial Presents a list of algorithm names and computational tools available for basic and clinical researchers

Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics

Download Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000539970
Total Pages : 241 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics by : Abhishek Kumar

Download or read book Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics written by Abhishek Kumar and published by CRC Press. This book was released on 2022-03-09 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last two decades, machine learning has developed dramatically and is still experiencing a fast and everlasting change in paradigms, methodology, applications and other aspects. This book offers a compendium of current and emerging machine learning paradigms in healthcare informatics and reflects on their diversity and complexity. Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research. It provides many case studies and a panoramic view of data and machine learning techniques, providing the opportunity for novel insights and discoveries. The book explores the theory and practical applications in healthcare and includes a guided tour of machine learning algorithms, architecture design and interdisciplinary challenges. This book is useful for research scholars and students involved in critical condition analysis and computation models.

Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics

Download Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000534057
Total Pages : 407 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics by : Sujata Dash

Download or read book Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics written by Sujata Dash and published by CRC Press. This book was released on 2022-02-10 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical and Health Informatics is an important field that brings tremendous opportunities and helps address challenges due to an abundance of available biomedical data. This book examines and demonstrates state-of-the-art approaches for IoT and Machine Learning based biomedical and health related applications. This book aims to provide computational methods for accumulating, updating and changing knowledge in intelligent systems and particularly learning mechanisms that help us to induce knowledge from the data. It is helpful in cases where direct algorithmic solutions are unavailable, there is lack of formal models, or the knowledge about the application domain is inadequately defined. In the future IoT has the impending capability to change the way we work and live. These computing methods also play a significant role in design and optimization in diverse engineering disciplines. With the influence and the development of the IoT concept, the need for AI (artificial intelligence) techniques has become more significant than ever. The aim of these techniques is to accept imprecision, uncertainties and approximations to get a rapid solution. However, recent advancements in representation of intelligent IoTsystems generate a more intelligent and robust system providing a human interpretable, low-cost, and approximate solution. Intelligent IoT systems have demonstrated great performance to a variety of areas including big data analytics, time series, biomedical and health informatics. This book will be very beneficial for the new researchers and practitioners working in the biomedical and healthcare fields to quickly know the best performing methods. It will also be suitable for a wide range of readers who may not be scientists but who are also interested in the practice of such areas as medical image retrieval, brain image segmentation, among others. • Discusses deep learning, IoT, machine learning, and biomedical data analysis with broad coverage of basic scientific applications • Presents deep learning and the tremendous improvement in accuracy, robustness, and cross- language generalizability it has over conventional approaches • Discusses various techniques of IoT systems for healthcare data analytics • Provides state-of-the-art methods of deep learning, machine learning and IoT in biomedical and health informatics • Focuses more on the application of algorithms in various real life biomedical and engineering problems

Data Analytics in Medicine

Download Data Analytics in Medicine PDF Online Free

Author :
Publisher : Medical Information Science Reference
ISBN 13 : 9781799812043
Total Pages : 2250 pages
Book Rating : 4.8/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Data Analytics in Medicine by : Information Resources Management Association

Download or read book Data Analytics in Medicine written by Information Resources Management Association and published by Medical Information Science Reference. This book was released on 2019-11-18 with total page 2250 pages. Available in PDF, EPUB and Kindle. Book excerpt: ""This book examines practical applications of healthcare analytics for improved patient care, resource allocation, and medical performance, as well as for diagnosing, predicting, and identifying at-risk populations"--

Signal Processing and Machine Learning for Biomedical Big Data

Download Signal Processing and Machine Learning for Biomedical Big Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351061216
Total Pages : 1235 pages
Book Rating : 4.3/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Signal Processing and Machine Learning for Biomedical Big Data by : Ervin Sejdic

Download or read book Signal Processing and Machine Learning for Biomedical Big Data written by Ervin Sejdic and published by CRC Press. This book was released on 2018-07-04 with total page 1235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within the healthcare domain, big data is defined as any ``high volume, high diversity biological, clinical, environmental, and lifestyle information collected from single individuals to large cohorts, in relation to their health and wellness status, at one or several time points.'' Such data is crucial because within it lies vast amounts of invaluable information that could potentially change a patient's life, opening doors to alternate therapies, drugs, and diagnostic tools. Signal Processing and Machine Learning for Biomedical Big Data thus discusses modalities; the numerous ways in which this data is captured via sensors; and various sample rates and dimensionalities. Capturing, analyzing, storing, and visualizing such massive data has required new shifts in signal processing paradigms and new ways of combining signal processing with machine learning tools. This book covers several of these aspects in two ways: firstly, through theoretical signal processing chapters where tools aimed at big data (be it biomedical or otherwise) are described; and, secondly, through application-driven chapters focusing on existing applications of signal processing and machine learning for big biomedical data. This text aimed at the curious researcher working in the field, as well as undergraduate and graduate students eager to learn how signal processing can help with big data analysis. It is the hope of Drs. Sejdic and Falk that this book will bring together signal processing and machine learning researchers to unlock existing bottlenecks within the healthcare field, thereby improving patient quality-of-life. Provides an overview of recent state-of-the-art signal processing and machine learning algorithms for biomedical big data, including applications in the neuroimaging, cardiac, retinal, genomic, sleep, patient outcome prediction, critical care, and rehabilitation domains. Provides contributed chapters from world leaders in the fields of big data and signal processing, covering topics such as data quality, data compression, statistical and graph signal processing techniques, and deep learning and their applications within the biomedical sphere. This book’s material covers how expert domain knowledge can be used to advance signal processing and machine learning for biomedical big data applications.

Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics

Download Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128220449
Total Pages : 374 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics by : Pradeep N

Download or read book Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics written by Pradeep N and published by Academic Press. This book was released on 2021-06-10 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics presents the changing world of data utilization, especially in clinical healthcare. Various techniques, methodologies, and algorithms are presented in this book to organize data in a structured manner that will assist physicians in the care of patients and help biomedical engineers and computer scientists understand the impact of these techniques on healthcare analytics. The book is divided into two parts: Part 1 covers big data aspects such as healthcare decision support systems and analytics-related topics. Part 2 focuses on the current frameworks and applications of deep learning and machine learning, and provides an outlook on future directions of research and development. The entire book takes a case study approach, providing a wealth of real-world case studies in the application chapters to act as a foundational reference for biomedical engineers, computer scientists, healthcare researchers, and clinicians. - Provides a comprehensive reference for biomedical engineers, computer scientists, advanced industry practitioners, researchers, and clinicians to understand and develop healthcare analytics using advanced tools and technologies - Includes in-depth illustrations of advanced techniques via dataset samples, statistical tables, and graphs with algorithms and computational methods for developing new applications in healthcare informatics - Unique case study approach provides readers with insights for practical clinical implementation

Proceedings of International Conference on Computational Intelligence, Data Science and Cloud Computing

Download Proceedings of International Conference on Computational Intelligence, Data Science and Cloud Computing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811916578
Total Pages : 466 pages
Book Rating : 4.8/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of International Conference on Computational Intelligence, Data Science and Cloud Computing by : Lopa Mandal

Download or read book Proceedings of International Conference on Computational Intelligence, Data Science and Cloud Computing written by Lopa Mandal and published by Springer Nature. This book was released on 2022-08-17 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes selected papers presented at International Conference on Computational Intelligence, Data Science,, and Cloud Computing (IEM-ICDC 2021), organized by the Department of Information Technology Institute of Engineering and Management, Kolkata, India, during December 22 – 24, 2021. It covers substantial new findings about AI and robotics, image processing and NLP, cloud computing and big data analytics as well as in cyber-security, blockchain and IoT, and various allied fields. The book serves as a reference resource for researchers and practitioners in academia and industry.

Applications of Artificial Intelligence in Healthcare and Biomedicine

Download Applications of Artificial Intelligence in Healthcare and Biomedicine PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0443223092
Total Pages : 550 pages
Book Rating : 4.4/5 (432 download)

DOWNLOAD NOW!


Book Synopsis Applications of Artificial Intelligence in Healthcare and Biomedicine by : Abdulhamit Subasi

Download or read book Applications of Artificial Intelligence in Healthcare and Biomedicine written by Abdulhamit Subasi and published by Elsevier. This book was released on 2024-03-22 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: ??Applications of Artificial Intelligence in Healthcare and Biomedicine provides ?updated knowledge on the applications of artificial intelligence in medical image analysis. The book starts with an introduction to Artificial Intelligence techniques for Healthcare and Biomedicine. In 16 chapters it presents artificial applications in Electrocardiogram (ECG), Electroencephalogram (EEG) and Electromyography (EMG), signal analysis, Computed Tomography (CT), Magnetic Resonance Imaging (MR) and Ultrasound image analysis. It equips researchers with tools for early breast cancer detection from mammograms using artificial intelligence (AI), AI models to detect lung cancer using histopathological images and a deep learning-based approach to get a proper and faster diagnosis of the Optical Coherence Tomography (OCT) images. It also presents present 3D medical image analysis using 3D Convolutional Neural Networks (CNNs). Applications of Artificial Intelligence in Healthcare and Biomedicine closes with a chapter on AI-based approach to forecast diabetes patients' hospital re-admissions. This is a valuable resource for clinicians, researchers and healthcare professionals who are interested in learning more about the applications of Artificial Intelligence and its impact in medical/biomedical image analysis. Provides knowledge on Artificial Intelligence algorithms for clinical data analysis Gives insights into both AI applications in biomedical signal analysis, biomedical image analysis, and applications in healthcare, including drug discovery Equips researchers with tools for early breast cancer detection

ECKM 2021 22nd European Conference on Knowledge Management

Download ECKM 2021 22nd European Conference on Knowledge Management PDF Online Free

Author :
Publisher : Academic Conferences limited
ISBN 13 : 1914587073
Total Pages : pages
Book Rating : 4.9/5 (145 download)

DOWNLOAD NOW!


Book Synopsis ECKM 2021 22nd European Conference on Knowledge Management by : Dr Alexeis Garcia-Perez

Download or read book ECKM 2021 22nd European Conference on Knowledge Management written by Dr Alexeis Garcia-Perez and published by Academic Conferences limited. This book was released on 2021-09-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Data Science and Predictive Analytics

Download Data Science and Predictive Analytics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031174836
Total Pages : 940 pages
Book Rating : 4.0/5 (311 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Predictive Analytics by : Ivo D. Dinov

Download or read book Data Science and Predictive Analytics written by Ivo D. Dinov and published by Springer Nature. This book was released on 2023-02-16 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown notebooks. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings. Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analytics address specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book’s fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices. This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic notebooks, extensive appendices, and additional materials.

Internet of Things enabled Machine Learning for Biomedical Application

Download Internet of Things enabled Machine Learning for Biomedical Application PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1040097650
Total Pages : 427 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Internet of Things enabled Machine Learning for Biomedical Application by : Neha Goel

Download or read book Internet of Things enabled Machine Learning for Biomedical Application written by Neha Goel and published by CRC Press. This book was released on 2024-11-13 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text begins by highlighting the benefits of the Internet of Things-enabled machine learning in the healthcare sector, examines the diagnosis of diseases using machine learning algorithms, and analyzes security and privacy issues in the healthcare systems using the Internet of Things. The text elaborates on image processing implementation for medical images to detect and classify diseases based on magnetic resonance imaging and ultrasound images. This book: · Covers the procedure to recognize emotions using image processing and the Internet of Things-enabled machine learning. · Highlights security and privacy issues in the healthcare system using the Internet of Things. · Discusses classification and implementation techniques of image segmentation. · Explains different algorithms of machine learning for image processing in a comprehensive manner. · Provides computational intelligence on the Internet of Things for future biomedical applications including lung cancer. It is primarily written for graduate students and academic researchers in the fields of electrical engineering, electronics and communications engineering, computer science and engineering, and biomedical engineering.

Computational Analysis and Deep Learning for Medical Care

Download Computational Analysis and Deep Learning for Medical Care PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119785723
Total Pages : 532 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Computational Analysis and Deep Learning for Medical Care by : Amit Kumar Tyagi

Download or read book Computational Analysis and Deep Learning for Medical Care written by Amit Kumar Tyagi and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture.