Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Combinatorics And Number Theory Of Counting Sequences
Download Combinatorics And Number Theory Of Counting Sequences full books in PDF, epub, and Kindle. Read online Combinatorics And Number Theory Of Counting Sequences ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Combinatorics and Number Theory of Counting Sequences by : Istvan Mezo
Download or read book Combinatorics and Number Theory of Counting Sequences written by Istvan Mezo and published by CRC Press. This book was released on 2019-08-19 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorics and Number Theory of Counting Sequences is an introduction to the theory of finite set partitions and to the enumeration of cycle decompositions of permutations. The presentation prioritizes elementary enumerative proofs. Therefore, parts of the book are designed so that even those high school students and teachers who are interested in combinatorics can have the benefit of them. Still, the book collects vast, up-to-date information for many counting sequences (especially, related to set partitions and permutations), so it is a must-have piece for those mathematicians who do research on enumerative combinatorics. In addition, the book contains number theoretical results on counting sequences of set partitions and permutations, so number theorists who would like to see nice applications of their area of interest in combinatorics will enjoy the book, too. Features The Outlook sections at the end of each chapter guide the reader towards topics not covered in the book, and many of the Outlook items point towards new research problems. An extensive bibliography and tables at the end make the book usable as a standard reference. Citations to results which were scattered in the literature now become easy, because huge parts of the book (especially in parts II and III) appear in book form for the first time.
Book Synopsis Combinatorics: The Art of Counting by : Bruce E. Sagan
Download or read book Combinatorics: The Art of Counting written by Bruce E. Sagan and published by American Mathematical Soc.. This book was released on 2020-10-16 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Book Synopsis General/Financial Awareness (Vol 2) Topicwise Notes for All Banking Related Exams | A Complete Preparation Book for All Your Banking Exams with Solved MCQs | IBPS Clerk, IBPS PO, SBI PO, SBI Clerk, RBI and Other Banking Exams by : EduGorilla Prep Experts
Download or read book General/Financial Awareness (Vol 2) Topicwise Notes for All Banking Related Exams | A Complete Preparation Book for All Your Banking Exams with Solved MCQs | IBPS Clerk, IBPS PO, SBI PO, SBI Clerk, RBI and Other Banking Exams written by EduGorilla Prep Experts and published by EduGorilla Community Pvt. Ltd.. This book was released on with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: EduGorilla's General/Financial Awareness (Vol 2) Study Notes are the best-selling notes for General/Financial Awareness in the English edition. Their content for banking exams is well-researched and covers all topics related to General/Financial Awareness. The notes are designed to help students prepare thoroughly for their exams, with topic-wise notes that are comprehensive and easy to understand. The notes also include solved multiple-choice questions (MCQs) for self-evaluation, allowing students to gauge their progress and identify areas that require further improvement. These study notes are tailored to the latest syllabus of all banking-related exams, making them a valuable resource for exam preparation.
Book Synopsis Notes on Counting: An Introduction to Enumerative Combinatorics by : Peter J. Cameron
Download or read book Notes on Counting: An Introduction to Enumerative Combinatorics written by Peter J. Cameron and published by Cambridge University Press. This book was released on 2017-06-29 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to enumerative combinatorics, vital to many areas of mathematics. It is suitable as a class text or for individual study.
Book Synopsis Combinatorics and Number Theory of Counting Sequences by : Istvan Mezo
Download or read book Combinatorics and Number Theory of Counting Sequences written by Istvan Mezo and published by CRC Press. This book was released on 2019-08-19 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorics and Number Theory of Counting Sequences is an introduction to the theory of finite set partitions and to the enumeration of cycle decompositions of permutations. The presentation prioritizes elementary enumerative proofs. Therefore, parts of the book are designed so that even those high school students and teachers who are interested in combinatorics can have the benefit of them. Still, the book collects vast, up-to-date information for many counting sequences (especially, related to set partitions and permutations), so it is a must-have piece for those mathematicians who do research on enumerative combinatorics. In addition, the book contains number theoretical results on counting sequences of set partitions and permutations, so number theorists who would like to see nice applications of their area of interest in combinatorics will enjoy the book, too. Features The Outlook sections at the end of each chapter guide the reader towards topics not covered in the book, and many of the Outlook items point towards new research problems. An extensive bibliography and tables at the end make the book usable as a standard reference. Citations to results which were scattered in the literature now become easy, because huge parts of the book (especially in parts II and III) appear in book form for the first time.
Book Synopsis Analytic Combinatorics by : Philippe Flajolet
Download or read book Analytic Combinatorics written by Philippe Flajolet and published by Cambridge University Press. This book was released on 2009-01-15 with total page 825 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Book Synopsis Fundamentals of Ramsey Theory by : Aaron Robertson
Download or read book Fundamentals of Ramsey Theory written by Aaron Robertson and published by CRC Press. This book was released on 2021-06-17 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ramsey theory is a fascinating topic. The author shares his view of the topic in this contemporary overview of Ramsey theory. He presents from several points of view, adding intuition and detailed proofs, in an accessible manner unique among most books on the topic. This book covers all of the main results in Ramsey theory along with results that have not appeared in a book before. The presentation is comprehensive and reader friendly. The book covers integer, graph, and Euclidean Ramsey theory with many proofs being combinatorial in nature. The author motivates topics and discussion, rather than just a list of theorems and proofs. In order to engage the reader, each chapter has a section of exercises. This up-to-date book introduces the field of Ramsey theory from several different viewpoints so that the reader can decide which flavor of Ramsey theory best suits them. Additionally, the book offers: A chapter providing different approaches to Ramsey theory, e.g., using topological dynamics, ergodic systems, and algebra in the Stone-Čech compactification of the integers. A chapter on the probabilistic method since it is quite central to Ramsey-type numbers. A unique chapter presenting some applications of Ramsey theory. Exercises in every chapter The intended audience consists of students and mathematicians desiring to learn about Ramsey theory. An undergraduate degree in mathematics (or its equivalent for advanced undergraduates) and a combinatorics course is assumed. TABLE OF CONENTS Preface List of Figures List of Tables Symbols 1. Introduction 2. Integer Ramsey Theory 3. Graph Ramsey Theory 4. Euclidean Ramsey Theory 5. Other Approaches to Ramsey Theory 6. The Probabilistic Method 7. Applications Bibliography Index Biography Aaron Robertson received his Ph.D. in mathematics from Temple University under the guidance of his advisor Doron Zeilberger. Upon finishing his Ph.D. he started at Colgate University in upstate New York where he is currently Professor of Mathematics. He also serves as Associate Managing editor of the journal Integers. After a brief detour into the world of permutation patterns, he has focused most of his research on Ramsey theory.
Book Synopsis Topics in Graph Theory by : Jonathan L Gross
Download or read book Topics in Graph Theory written by Jonathan L Gross and published by CRC Press. This book was released on 2023-05-24 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interplay continues to grow between graph theory and a wide variety of models and applications in mathematics, computer science, operations research, and the natural and social sciences. Topics in Graph Theory is geared toward the more mathematically mature student. The first three chapters provide the basic definitions and theorems of graph theory and the remaining chapters introduce a variety of topics and directions for research. These topics draw on numerous areas of theoretical and applied mathematics, including combinatorics, probability, linear algebra, group theory, topology, operations research, and computer science. This makes the book appropriate for a first course at the graduate level or as a second course at the undergraduate level. The authors build upon material previously published in Graph Theory and Its Applications, Third Edition, by the same authors. That text covers material for both an undergraduate and graduate course, while this book builds on and expands the graduate-level material. Features Extensive exercises and applications. Flexibility: appropriate for either a first course at the graduate level or an advanced course at the undergraduate level. Opens avenues to a variety of research areas in graph theory. Emphasis on topological and algebraic graph theory.
Book Synopsis Discrete Mathematics by : Oscar Levin
Download or read book Discrete Mathematics written by Oscar Levin and published by Createspace Independent Publishing Platform. This book was released on 2016-08-16 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Book Synopsis The Lambert W Function by : Istvan Mezo
Download or read book The Lambert W Function written by Istvan Mezo and published by CRC Press. This book was released on 2022-04-10 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the very first one in the English language entirely dedicated to the Lambert W function, its generalizations, and its applications. One goal is to promote future research on the topic. The book contains all the information one needs when trying to find a result. The most important formulas and results are framed. The Lambert W function is a multi-valued inverse function with plenty of applications in areas like molecular physics, relativity theory, fuel consumption models, plasma physics, analysis of epidemics, bacterial growth models, delay differential equations, fluid mechanics, game theory, statistics, study of magnetic materials, and so on. The first part of the book gives a full treatise of the W function from theoretical point of view. The second part presents generalizations of this function which have been introduced by the need of applications where the classical W function is insufficient. The third part presents a large number of applications from physics, biology, game theory, bacterial cell growth models, and so on. The second part presents the generalized Lambert functions based on the tools we had developed in the first part. In the third part familiarity with Newtonian physics will be useful. The text is written to be accessible for everyone with only basic knowledge on calculus and complex numbers. Additional features include the Further Notes sections offering interesting research problems and information for further studies. Mathematica codes are included. The Lambert function is arguably the simplest non-elementary transcendental function out of the standard set of sin, cos, log, etc., therefore students who would like to deepen their understanding of real and complex analysis can see a new “almost elementary” function on which they can practice their knowledge.
Book Synopsis A Course in Combinatorics by : J. H. van Lint
Download or read book A Course in Combinatorics written by J. H. van Lint and published by Cambridge University Press. This book was released on 2001-11-22 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.
Book Synopsis Methods for the Summation of Series by : Tian-Xiao He
Download or read book Methods for the Summation of Series written by Tian-Xiao He and published by CRC Press. This book was released on 2022-01-26 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents methods for the summation of infinite and finite series and the related identities and inversion relations. The summation includes the column sums and row sums of lower triangular matrices. The convergence of the summation of infinite series is considered. The author’s focus is on symbolic methods and the Riordan array approach. In addition, this book contains hundreds summation formulas and identities, which can be used as a handbook for people working in computer science, applied mathematics, and computational mathematics, particularly, combinatorics, computational discrete mathematics, and computational number theory. The exercises at the end of each chapter help deepen understanding. Much of the materials in this book has never appeared before in textbook form. This book can be used as a suitable textbook for advanced courses for high lever undergraduate and lower lever graduate students. It is also an introductory self-study book for re- searchers interested in this field, while some materials of the book can be used as a portal for further research.
Book Synopsis Number Theory and Combinatorics by : Bruce M. Landman
Download or read book Number Theory and Combinatorics written by Bruce M. Landman and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-04-19 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over a career that spanned 60 years, Ronald L. Graham (known to all as Ron) made significant contributions to the fields of discrete mathematics, number theory, Ramsey theory, computational geometry, juggling and magical mathematics, and many more. Ron also was a mentor to generations of mathematicians, he gave countless talks and helped bring mathematics to a wider audience, and he held signifi cant leadership roles in the mathematical community. This volume is dedicated to the life and memory of Ron Graham, and includes 20-articles by leading scientists across a broad range of subjects that refl ect some of the many areas in which Ron worked.
Book Synopsis An Introduction to the Theory of Numbers by : Leo Moser
Download or read book An Introduction to the Theory of Numbers written by Leo Moser and published by The Trillia Group. This book was released on 2004 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book, which presupposes familiarity only with the most elementary concepts of arithmetic (divisibility properties, greatest common divisor, etc.), is an expanded version of a series of lectures for graduate students on elementary number theory. Topics include: Compositions and Partitions; Arithmetic Functions; Distribution of Primes; Irrational Numbers; Congruences; Diophantine Equations; Combinatorial Number Theory; and Geometry of Numbers. Three sections of problems (which include exercises as well as unsolved problems) complete the text."--Publisher's description
Book Synopsis Applications of Combinatorics and Graph Theory to the Biological and Social Sciences by : Fred Roberts
Download or read book Applications of Combinatorics and Graph Theory to the Biological and Social Sciences written by Fred Roberts and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications Applications of Combinatorics and Graph Theory to the Biological and Social Sciences is based on the proceedings of a workshop which was an integral part of the 1987-88 IMA program on APPLIED COMBINATORICS. We are grateful to the Scientific Committee: Victor Klee (Chairman), Daniel Kleitman, Dijen Ray-Chaudhuri and Dennis Stanton for planning and implementing an exciting and stimulating year long program. We especially thank the Workshop Organizers, Joel Cohen and Fred Roberts, for organizing a workshop which brought together many of the major figures in a variety of research fields connected with the application of combinatorial ideas to the social and biological sciences. A vner Friedman Willard Miller APPLICATIONS OF COMBINATORICS AND GRAPH THEORY TO THE BIOLOGICAL AND SOCIAL SCIENCES: SEVEN FUNDAMENTAL IDEAS FRED S. RoBERTS* Abstract. To set the stage for the other papers in this volume, seven fundamental concepts which arise in the applications of combinatorics and graph theory in the biological and social sciences are described. These ideas are: RNA chains as "words" in a 4 letter alphabet; interval graphs; competition graphs or niche overlap graphs; qualitative stability; balanced signed graphs; social welfare functions; and semiorders. For each idea, some basic results are presented, some recent results are given, and some open problems are mentioned.
Book Synopsis Proofs that Really Count by : Arthur T. Benjamin
Download or read book Proofs that Really Count written by Arthur T. Benjamin and published by American Mathematical Society. This book was released on 2022-09-21 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.
Book Synopsis A Path to Combinatorics for Undergraduates by : Titu Andreescu
Download or read book A Path to Combinatorics for Undergraduates written by Titu Andreescu and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique approach to combinatorics is centered around unconventional, essay-type combinatorial examples, followed by a number of carefully selected, challenging problems and extensive discussions of their solutions. Topics encompass permutations and combinations, binomial coefficients and their applications, bijections, inclusions and exclusions, and generating functions. Each chapter features fully-worked problems, including many from Olympiads and other competitions, as well as a number of problems original to the authors; at the end of each chapter are further exercises to reinforce understanding, encourage creativity, and build a repertory of problem-solving techniques. The authors' previous text, "102 Combinatorial Problems," makes a fine companion volume to the present work, which is ideal for Olympiad participants and coaches, advanced high school students, undergraduates, and college instructors. The book's unusual problems and examples will interest seasoned mathematicians as well. "A Path to Combinatorics for Undergraduates" is a lively introduction not only to combinatorics, but to mathematical ingenuity, rigor, and the joy of solving puzzles.