Closed Geodesics on Riemannian Manifolds

Download Closed Geodesics on Riemannian Manifolds PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082180703X
Total Pages : 85 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Closed Geodesics on Riemannian Manifolds by : Wilhelm Klingenberg (Mathematician)

Download or read book Closed Geodesics on Riemannian Manifolds written by Wilhelm Klingenberg (Mathematician) and published by American Mathematical Soc.. This book was released on 1983 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains expository lectures from the CBMS Regional Conference held at the University of Florida, 1982. This book considers a space formed by various closed curves in which the closed geodesics are characterized as the critical points of a functional, an idea going back to Morse.

Lectures on Closed Geodesics

Download Lectures on Closed Geodesics PDF Online Free

Author :
Publisher :
ISBN 13 : 9783642618826
Total Pages : 248 pages
Book Rating : 4.6/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Closed Geodesics by : W Klingenberg

Download or read book Lectures on Closed Geodesics written by W Klingenberg and published by . This book was released on 1978-01-01 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Manifolds all of whose Geodesics are Closed

Download Manifolds all of whose Geodesics are Closed PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642618766
Total Pages : 271 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis Manifolds all of whose Geodesics are Closed by : A. L. Besse

Download or read book Manifolds all of whose Geodesics are Closed written by A. L. Besse and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: X 1 O S R Cher lecteur, J'entre bien tard dans la sphere etroite des ecrivains au double alphabet, moi qui, il y a plus de quarante ans deja, avais accueilli sur mes terres un general epris de mathematiques. JI m'avait parle de ses projets grandioses en promettant d'ailleurs de m'envoyer ses ouvrages de geometrie. Je suis entiche de geometrie et c'est d'elle dontje voudrais vous parler, oh! certes pas de toute la geometrie, mais de celle que fait l'artisan qui taille, burine, amene, gauchit, peaufine les formes. Mon interet pour le probleme dont je veux vous entretenir ici, je le dois a un ami ebeniste. En effet comme je rendais un jour visite il cet ami, je le trouvai dans son atelier affaire a un tour. Il se retourna bientot, puis, rayonnant, me tendit une sorte de toupie et me dit: {laquo}Monsieur Besse, vous qui calculez les formes avec vos grimoires, que pensez-vous de ceci?)) Je le regardai interloque. Il poursuivit: {laquo}Regardez! Si vous prenez ce collier de laine et si vous le maintenez fermement avec un doigt place n'importe ou sur la toupie, eh bien! la toupie passera toujours juste en son interieur, sans laisser le moindre espace.)) Je rentrai chez moi, fort etonne, car sa toupie etait loin d'etre une boule. Je me mis alors au travail ...

Lectures on Closed Geodesics

Download Lectures on Closed Geodesics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642618812
Total Pages : 238 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Closed Geodesics by : W. Klingenberg

Download or read book Lectures on Closed Geodesics written by W. Klingenberg and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: The question of existence of c10sed geodesics on a Riemannian manifold and the properties of the corresponding periodic orbits in the geodesic flow has been the object of intensive investigations since the beginning of global differential geo metry during the last century. The simplest case occurs for c10sed surfaces of negative curvature. Here, the fundamental group is very large and, as shown by Hadamard [Had] in 1898, every non-null homotopic c10sed curve can be deformed into a c10sed curve having minimallength in its free homotopy c1ass. This minimal curve is, up to the parameterization, uniquely determined and represents a c10sed geodesic. The question of existence of a c10sed geodesic on a simply connected c10sed surface is much more difficult. As pointed out by Poincare [po 1] in 1905, this problem has much in common with the problem ofthe existence of periodic orbits in the restricted three body problem. Poincare [l.c.] outlined a proof that on an analytic convex surface which does not differ too much from the standard sphere there always exists at least one c10sed geodesic of elliptic type, i. e., the corres ponding periodic orbit in the geodesic flow is infinitesimally stable.

Geodesic Flows

Download Geodesic Flows PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461216001
Total Pages : 160 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Geodesic Flows by : Gabriel P. Paternain

Download or read book Geodesic Flows written by Gabriel P. Paternain and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to present the fundamental concepts and properties of the geodesic flow of a closed Riemannian manifold. The topics covered are close to my research interests. An important goal here is to describe properties of the geodesic flow which do not require curvature assumptions. A typical example of such a property and a central result in this work is Mane's formula that relates the topological entropy of the geodesic flow with the exponential growth rate of the average numbers of geodesic arcs between two points in the manifold. The material here can be reasonably covered in a one-semester course. I have in mind an audience with prior exposure to the fundamentals of Riemannian geometry and dynamical systems. I am very grateful for the assistance and criticism of several people in preparing the text. In particular, I wish to thank Leonardo Macarini and Nelson Moller who helped me with the writing of the first two chapters and the figures. Gonzalo Tomaria caught several errors and contributed with helpful suggestions. Pablo Spallanzani wrote solutions to several of the exercises. I have used his solutions to write many of the hints and answers. I also wish to thank the referee for a very careful reading of the manuscript and for a large number of comments with corrections and suggestions for improvement.

On the Hypotheses Which Lie at the Bases of Geometry

Download On the Hypotheses Which Lie at the Bases of Geometry PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319260421
Total Pages : 181 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis On the Hypotheses Which Lie at the Bases of Geometry by : Bernhard Riemann

Download or read book On the Hypotheses Which Lie at the Bases of Geometry written by Bernhard Riemann and published by Birkhäuser. This book was released on 2016-04-19 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents William Clifford’s English translation of Bernhard Riemann’s classic text together with detailed mathematical, historical and philosophical commentary. The basic concepts and ideas, as well as their mathematical background, are provided, putting Riemann’s reasoning into the more general and systematic perspective achieved by later mathematicians and physicists (including Helmholtz, Ricci, Weyl, and Einstein) on the basis of his seminal ideas. Following a historical introduction that positions Riemann’s work in the context of his times, the history of the concept of space in philosophy, physics and mathematics is systematically presented. A subsequent chapter on the reception and influence of the text accompanies the reader from Riemann’s times to contemporary research. Not only mathematicians and historians of the mathematical sciences, but also readers from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.

Riemannian Manifolds

Download Riemannian Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387227261
Total Pages : 232 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Riemannian Manifolds by : John M. Lee

Download or read book Riemannian Manifolds written by John M. Lee and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

Introduction to Riemannian Manifolds

Download Introduction to Riemannian Manifolds PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319917552
Total Pages : 447 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Riemannian Manifolds by : John M. Lee

Download or read book Introduction to Riemannian Manifolds written by John M. Lee and published by Springer. This book was released on 2019-01-02 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

Closed Geodesics on Riemannian Manifolds

Download Closed Geodesics on Riemannian Manifolds PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821888988
Total Pages : pages
Book Rating : 4.8/5 (889 download)

DOWNLOAD NOW!


Book Synopsis Closed Geodesics on Riemannian Manifolds by : Wilhelm Klingenberg

Download or read book Closed Geodesics on Riemannian Manifolds written by Wilhelm Klingenberg and published by American Mathematical Soc.. This book was released on 1983 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geodesic Flows on Closed Riemann Manifolds with Negative Curvature

Download Geodesic Flows on Closed Riemann Manifolds with Negative Curvature PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 442 pages
Book Rating : 4.:/5 (321 download)

DOWNLOAD NOW!


Book Synopsis Geodesic Flows on Closed Riemann Manifolds with Negative Curvature by : D. V. Anosov

Download or read book Geodesic Flows on Closed Riemann Manifolds with Negative Curvature written by D. V. Anosov and published by . This book was released on 1969 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Comparison Theorems in Riemannian Geometry

Download Comparison Theorems in Riemannian Geometry PDF Online Free

Author :
Publisher : Newnes
ISBN 13 : 0444107649
Total Pages : 183 pages
Book Rating : 4.4/5 (441 download)

DOWNLOAD NOW!


Book Synopsis Comparison Theorems in Riemannian Geometry by : Jeff Cheeger

Download or read book Comparison Theorems in Riemannian Geometry written by Jeff Cheeger and published by Newnes. This book was released on 2009-01-15 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comparison Theorems in Riemannian Geometry

An Introduction to Riemannian Geometry

Download An Introduction to Riemannian Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319086669
Total Pages : 476 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Riemannian Geometry by : Leonor Godinho

Download or read book An Introduction to Riemannian Geometry written by Leonor Godinho and published by Springer. This book was released on 2014-07-26 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

The Laplacian on a Riemannian Manifold

Download The Laplacian on a Riemannian Manifold PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521468312
Total Pages : 190 pages
Book Rating : 4.4/5 (683 download)

DOWNLOAD NOW!


Book Synopsis The Laplacian on a Riemannian Manifold by : Steven Rosenberg

Download or read book The Laplacian on a Riemannian Manifold written by Steven Rosenberg and published by Cambridge University Press. This book was released on 1997-01-09 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds.

Riemannian Geometry in an Orthogonal Frame

Download Riemannian Geometry in an Orthogonal Frame PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810247478
Total Pages : 284 pages
Book Rating : 4.2/5 (474 download)

DOWNLOAD NOW!


Book Synopsis Riemannian Geometry in an Orthogonal Frame by : Elie Cartan

Download or read book Riemannian Geometry in an Orthogonal Frame written by Elie Cartan and published by World Scientific. This book was released on 2001 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elie Cartan's book Geometry of Riemannian Manifolds (1928) was one of the best introductions to his methods. It was based on lectures given by the author at the Sorbonne in the academic year 1925-26. A modernized and extensively augmented edition appeared in 1946 (2nd printing, 1951, and 3rd printing, 1988). Cartan's lectures in 1926-27 were different -- he introduced exterior forms at the very beginning and used extensively orthonormal frames throughout to investigate the geometry of Riemannian manifolds. In this course he solved a series of problems in Euclidean and non-Euclidean spaces, as well as a series of variational problems on geodesics. The lectures were translated into Russian in the book Riemannian Geometry in an Orthogonal Frame (1960). This book has many innovations, such as the notion of intrinsic normal differentiation and the Gaussian torsion of a submanifold in a Euclidean multidimensional space or in a space of constant curvature, an affine connection defined in a normal fiber bundle of a submanifold, etc. The only book of Elie Cartan that was not available in English, it has now been translated into English by Vladislav V Goldberg, the editor of the Russian edition.

Lectures on Spaces of Nonpositive Curvature

Download Lectures on Spaces of Nonpositive Curvature PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034892403
Total Pages : 114 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Spaces of Nonpositive Curvature by : Werner Ballmann

Download or read book Lectures on Spaces of Nonpositive Curvature written by Werner Ballmann and published by Birkhäuser. This book was released on 2012-12-06 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Singular spaces with upper curvature bounds and, in particular, spaces of nonpositive curvature, have been of interest in many fields, including geometric (and combinatorial) group theory, topology, dynamical systems and probability theory. In the first two chapters of the book, a concise introduction into these spaces is given, culminating in the Hadamard-Cartan theorem and the discussion of the ideal boundary at infinity for simply connected complete spaces of nonpositive curvature. In the third chapter, qualitative properties of the geodesic flow on geodesically complete spaces of nonpositive curvature are discussed, as are random walks on groups of isometries of nonpositively curved spaces. The main class of spaces considered should be precisely complementary to symmetric spaces of higher rank and Euclidean buildings of dimension at least two (Rank Rigidity conjecture). In the smooth case, this is known and is the content of the Rank Rigidity theorem. An updated version of the proof of the latter theorem (in the smooth case) is presented in Chapter IV of the book. This chapter contains also a short introduction into the geometry of the unit tangent bundle of a Riemannian manifold and the basic facts about the geodesic flow. In an appendix by Misha Brin, a self-contained and short proof of the ergodicity of the geodesic flow of a compact Riemannian manifold of negative curvature is given. The proof is elementary and should be accessible to the non-specialist. Some of the essential features and problems of the ergodic theory of smooth dynamical systems are discussed, and the appendix can serve as an introduction into this theory.

Topics in Geometry

Download Topics in Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780817638283
Total Pages : 396 pages
Book Rating : 4.6/5 (382 download)

DOWNLOAD NOW!


Book Synopsis Topics in Geometry by : Simon Gindikin

Download or read book Topics in Geometry written by Simon Gindikin and published by Springer Science & Business Media. This book was released on 1996-06-27 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of articles serves to commemorate the legacy of Joseph D'Atri, who passed away on April 29, 1993, a few days after his 55th birthday. Joe D' Atri is credited with several fundamental discoveries in ge ometry. In the beginning of his mathematical career, Joe was interested in the generalization of symmetrical spaces in the E. Cart an sense. Symmetric spaces, differentiated from other homogeneous manifolds by their geomet rical richness, allows the development of a deep analysis. Geometers have been constantly interested and challenged by the problem of extending the class of symmetric spaces so as to preserve their geometrical and analytical abundance. The name of D'Atri is tied to one of the most successful gen eralizations: Riemann manifolds in which (local) geodesic symmetries are volume-preserving (up to sign). In time, it turned out that the majority of interesting generalizations of symmetrical spaces are D'Atri spaces: natu ral reductive homogeneous spaces, Riemann manifolds whose geodesics are orbits of one-parameter subgroups, etc. The central place in D'Atri's research is occupied by homogeneous bounded domains in en, which are not symmetric. Such domains were discovered by Piatetskii-Shapiro in 1959, and given Joe's strong interest in the generalization of symmetric spaces, it was very natural for him to direct his research along this path.

Homogeneous Finsler Spaces

Download Homogeneous Finsler Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461442443
Total Pages : 250 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Homogeneous Finsler Spaces by : Shaoqiang Deng

Download or read book Homogeneous Finsler Spaces written by Shaoqiang Deng and published by Springer Science & Business Media. This book was released on 2012-08-01 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogeneous Finsler Spaces is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduces the most recent developments in the study of Lie groups and homogeneous Finsler spaces, leading the reader to directions for further development. The book contains many interesting results such as a Finslerian version of the Myers-Steenrod Theorem, the existence theorem for invariant non-Riemannian Finsler metrics on coset spaces, the Berwaldian characterization of globally symmetric Finsler spaces, the construction of examples of reversible non-Berwaldian Finsler spaces with vanishing S-curvature, and a classification of homogeneous Randers spaces with isotropic S-curvature and positive flag curvature. Readers with some background in Lie theory or differential geometry can quickly begin studying problems concerning Lie groups and Finsler geometry.​