Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Classification Algorithms
Download Classification Algorithms full books in PDF, epub, and Kindle. Read online Classification Algorithms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Data Classification by : Charu C. Aggarwal
Download or read book Data Classification written by Charu C. Aggarwal and published by CRC Press. This book was released on 2014-07-25 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Coverage of the Entire Area of ClassificationResearch on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlyi
Book Synopsis Classification Algorithms for Codes and Designs by : Petteri Kaski
Download or read book Classification Algorithms for Codes and Designs written by Petteri Kaski and published by Springer Science & Business Media. This book was released on 2006-02-03 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new starting-point and a new method are requisite, to insure a complete [classi?cation of the Steiner triple systems of order 15]. This method was furnished, and its tedious and di?cult execution und- taken, by Mr. Cole. F. N. Cole, L. D. Cummings, and H. S. White (1917) [129] The history of classifying combinatorial objects is as old as the history of the objects themselves. In the mid-19th century, Kirkman, Steiner, and others became the fathers of modern combinatorics, and their work – on various objects, including (what became later known as) Steiner triple systems – led to several classi?cation results. Almost a century earlier, in 1782, Euler [180] published some results on classifying small Latin squares, but for the ?rst few steps in this direction one should actually go at least as far back as ancient Greece and the proof that there are exactly ?ve Platonic solids. One of the most remarkable achievements in the early, pre-computer era is the classi?cation of the Steiner triple systems of order 15, quoted above. An onerous task that, today, no sensible person would attempt by hand calcu- tion. Because, with the exception of occasional parameters for which com- natorial arguments are e?ective (often to prove nonexistence or uniqueness), classi?cation in general is about algorithms and computation.
Book Synopsis Evaluating Learning Algorithms by : Nathalie Japkowicz
Download or read book Evaluating Learning Algorithms written by Nathalie Japkowicz and published by Cambridge University Press. This book was released on 2011-01-17 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of machine learning has matured to the point where many sophisticated learning approaches can be applied to practical applications. Thus it is of critical importance that researchers have the proper tools to evaluate learning approaches and understand the underlying issues. This book examines various aspects of the evaluation process with an emphasis on classification algorithms. The authors describe several techniques for classifier performance assessment, error estimation and resampling, obtaining statistical significance as well as selecting appropriate domains for evaluation. They also present a unified evaluation framework and highlight how different components of evaluation are both significantly interrelated and interdependent. The techniques presented in the book are illustrated using R and WEKA, facilitating better practical insight as well as implementation. Aimed at researchers in the theory and applications of machine learning, this book offers a solid basis for conducting performance evaluations of algorithms in practical settings.
Book Synopsis Machine Learning Models and Algorithms for Big Data Classification by : Shan Suthaharan
Download or read book Machine Learning Models and Algorithms for Big Data Classification written by Shan Suthaharan and published by Springer. This book was released on 2015-10-20 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.
Book Synopsis Mastering Classification Algorithms for Machine Learning by : Partha Majumdar
Download or read book Mastering Classification Algorithms for Machine Learning written by Partha Majumdar and published by BPB Publications. This book was released on 2023-05-23 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to mastering Classification algorithms for Machine learning KEY FEATURES ● Get familiar with all the state-of-the-art classification algorithms for machine learning. ● Understand the mathematical foundations behind building machine learning models. ● Learn how to apply machine learning models to solve real-world industry problems. DESCRIPTION Classification algorithms are essential in machine learning as they allow us to make predictions about the class or category of an input by considering its features. These algorithms have a significant impact on multiple applications like spam filtering, sentiment analysis, image recognition, and fraud detection. If you want to expand your knowledge about classification algorithms, this book is the ideal resource for you. The book starts with an introduction to problem-solving in machine learning and subsequently focuses on classification problems. It then explores the Naïve Bayes algorithm, a probabilistic method widely used in industrial applications. The application of Bayes Theorem and underlying assumptions in developing the Naïve Bayes algorithm for classification is also covered. Moving forward, the book centers its attention on the Logistic Regression algorithm, exploring the sigmoid function and its significance in binary classification. The book also covers Decision Trees and discusses the Gini Factor, Entropy, and their use in splitting trees and generating decision leaves. The Random Forest algorithm is also thoroughly explained as a cutting-edge method for classification (and regression). The book concludes by exploring practical applications such as Spam Detection, Customer Segmentation, Disease Classification, Malware Detection in JPEG and ELF Files, Emotion Analysis from Speech, and Image Classification. By the end of the book, you will become proficient in utilizing classification algorithms for solving complex machine learning problems. WHAT YOU WILL LEARN ● Learn how to apply Naïve Bayes algorithm to solve real-world classification problems. ● Explore the concept of K-Nearest Neighbor algorithm for classification tasks. ● Dive into the Logistic Regression algorithm for classification. ● Explore techniques like Bagging and Random Forest to overcome the weaknesses of Decision Trees. ● Learn how to combine multiple models to improve classification accuracy and robustness. WHO THIS BOOK IS FOR This book is for Machine Learning Engineers, Data Scientists, Data Science Enthusiasts, Researchers, Computer Programmers, and Students who are interested in exploring a wide range of algorithms utilized for classification tasks in machine learning. TABLE OF CONTENTS 1. Introduction to Machine Learning 2. Naïve Bayes Algorithm 3. K-Nearest Neighbor Algorithm 4. Logistic Regression 5. Decision Tree Algorithm 6. Ensemble Models 7. Random Forest Algorithm 8. Boosting Algorithm Annexure 1: Jupyter Notebook Annexure 2: Python Annexure 3: Singular Value Decomposition Annexure 4: Preprocessing Textual Data Annexure 5: Stemming and Lamentation Annexure 6: Vectorizers Annexure 7: Encoders Annexure 8: Entropy
Book Synopsis Mining Text Data by : Charu C. Aggarwal
Download or read book Mining Text Data written by Charu C. Aggarwal and published by Springer Science & Business Media. This book was released on 2012-02-03 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.
Author :Sanghamitra Bandyopadhyay Publisher :Springer Science & Business Media ISBN 13 :3540496076 Total Pages :320 pages Book Rating :4.5/5 (44 download)
Book Synopsis Classification and Learning Using Genetic Algorithms by : Sanghamitra Bandyopadhyay
Download or read book Classification and Learning Using Genetic Algorithms written by Sanghamitra Bandyopadhyay and published by Springer Science & Business Media. This book was released on 2007-05-17 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unified framework that describes how genetic learning can be used to design pattern recognition and learning systems. It examines how a search technique, the genetic algorithm, can be used for pattern classification mainly through approximating decision boundaries. Coverage also demonstrates the effectiveness of the genetic classifiers vis-à-vis several widely used classifiers, including neural networks.
Book Synopsis Image Recognition and Classification by : Bahram Javidi
Download or read book Image Recognition and Classification written by Bahram Javidi and published by CRC Press. This book was released on 2002-06-14 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Details the latest image processing algorithms and imaging systems for image recognition with diverse applications to the military; the transportation, aerospace, information security, and biomedical industries; radar systems; and image tracking systems."
Book Synopsis Big Data Analytics for Sustainable Computing by : Haldorai, Anandakumar
Download or read book Big Data Analytics for Sustainable Computing written by Haldorai, Anandakumar and published by IGI Global. This book was released on 2019-09-20 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data consists of data sets that are too large and complex for traditional data processing and data management applications. Therefore, to obtain the valuable information within the data, one must use a variety of innovative analytical methods, such as web analytics, machine learning, and network analytics. As the study of big data becomes more popular, there is an urgent demand for studies on high-level computational intelligence and computing services for analyzing this significant area of information science. Big Data Analytics for Sustainable Computing is a collection of innovative research that focuses on new computing and system development issues in emerging sustainable applications. Featuring coverage on a wide range of topics such as data filtering, knowledge engineering, and cognitive analytics, this publication is ideally designed for data scientists, IT specialists, computer science practitioners, computer engineers, academicians, professionals, and students seeking current research on emerging analytical techniques and data processing software.
Book Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz
Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Book Synopsis Building Machine Learning and Deep Learning Models on Google Cloud Platform by : Ekaba Bisong
Download or read book Building Machine Learning and Deep Learning Models on Google Cloud Platform written by Ekaba Bisong and published by Apress. This book was released on 2019-09-27 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. What You’ll Learn Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your resultsKnow the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products Who This Book Is For Beginners to the practice of data science and applied machine learning, data scientists at all levels, machine learning engineers, Google Cloud Platform data engineers/architects, and software developers
Book Synopsis Algorithms from and for Nature and Life by : Berthold Lausen
Download or read book Algorithms from and for Nature and Life written by Berthold Lausen and published by Springer Science & Business Media. This book was released on 2013-08-28 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides approaches and solutions to challenges occurring at the interface of research fields such as, e.g., data analysis, data mining and knowledge discovery, computer science, operations research, and statistics. In addition to theory-oriented contributions various application areas are included. Moreover, traditional classification research directions concerning network data, graphs, and social relationships as well as statistical musicology describe examples for current interest fields tackled by the authors. The book comprises a total of 55 selected papers presented at the Joint Conference of the German Classification Society (GfKl), the German Association for Pattern Recognition (DAGM), and the Symposium of the International Federation of Classification Societies (IFCS) in 2011.
Book Synopsis Classification and Regression Trees by : Leo Breiman
Download or read book Classification and Regression Trees written by Leo Breiman and published by Routledge. This book was released on 2017-10-19 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.
Book Synopsis Effective CRM using Predictive Analytics by : Antonios Chorianopoulos
Download or read book Effective CRM using Predictive Analytics written by Antonios Chorianopoulos and published by John Wiley & Sons. This book was released on 2016-01-19 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step guide to data mining applications in CRM. Following a handbook approach, this book bridges the gap between analytics and their use in everyday marketing, providing guidance on solving real business problems using data mining techniques. The book is organized into three parts. Part one provides a methodological roadmap, covering both the business and the technical aspects. The data mining process is presented in detail along with specific guidelines for the development of optimized acquisition, cross/ deep/ up selling and retention campaigns, as well as effective customer segmentation schemes. In part two, some of the most useful data mining algorithms are explained in a simple and comprehensive way for business users with no technical expertise. Part three is packed with real world case studies which employ the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Case studies from industries including banking, retail and telecommunications are presented in detail so as to serve as templates for developing similar applications. Key Features: Includes numerous real-world case studies which are presented step by step, demystifying the usage of data mining models and clarifying all the methodological issues. Topics are presented with the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Accompanied by a website featuring material from each case study, including datasets and relevant code. Combining data mining and business knowledge, this practical book provides all the necessary information for designing, setting up, executing and deploying data mining techniques in CRM. Effective CRM using Predictive Analytics will benefit data mining practitioners and consultants, data analysts, statisticians, and CRM officers. The book will also be useful to academics and students interested in applied data mining.
Book Synopsis Machine Learning Algorithms and Applications by : Mettu Srinivas
Download or read book Machine Learning Algorithms and Applications written by Mettu Srinivas and published by John Wiley & Sons. This book was released on 2021-08-10 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Algorithms is for current and ambitious machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.
Book Synopsis Artificial Intelligence in Theory and Practice by : Max Bramer
Download or read book Artificial Intelligence in Theory and Practice written by Max Bramer and published by Springer. This book was released on 2006-10-11 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers in this volume comprise the refereed proceedings of the conference 'Artificial Intelligence in Theory and Practice' (IFIP AI 2006), which formed part of the 19th World Computer Congress of IFIP, the International Federation for Information Processing (WCC- 2006), in Santiago, Chile in August 2006. The conference is organised by the IFIP Technical Committee on Artificial Intelligence (Technical Committee 12) and its Working Group 12.5 (Artificial Intelligence Applications). All papers were reviewed by at least two members of our Programme Committee. The best papers were selected for the conference and are included in this volume. The international nature of IFIP is amply reflected in the large number of countries represented here. The conference featured invited talks by Rose Dieng, John Atkinson, John Debenham and myself. IFIP AI 2006 also included the Second IFIP Symposium on Professional Practice in Artificial Intelligence, organised by Professor John Debenham, which ran alongside the refereed papers. I should like to thank the conference chair. Professor Debenham for all his efforts in organising the Symposium and the members of our programme committee for reviewing an unexpectedly large number of papers to a very tight deadline. This is the latest in a series of conferences organised by IFIP Technical Committee 12 dedicated to the techniques of Artificial Intelligence and their real-world applications. The wide range and importance of these applications is clearly indicated by the papers in this volume. Further information about TCI 2 can be found on our website http://www.ifiptcl2.org.
Author :Management Association, Information Resources Publisher :IGI Global ISBN 13 :1799824616 Total Pages :1961 pages Book Rating :4.7/5 (998 download)
Book Synopsis Cognitive Analytics: Concepts, Methodologies, Tools, and Applications by : Management Association, Information Resources
Download or read book Cognitive Analytics: Concepts, Methodologies, Tools, and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2020-03-06 with total page 1961 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries, including business and healthcare. It is necessary to develop specific software programs that can analyze and interpret large amounts of data quickly in order to ensure adequate usage and predictive results. Cognitive Analytics: Concepts, Methodologies, Tools, and Applications provides emerging perspectives on the theoretical and practical aspects of data analysis tools and techniques. It also examines the incorporation of pattern management as well as decision-making and prediction processes through the use of data management and analysis. Highlighting a range of topics such as natural language processing, big data, and pattern recognition, this multi-volume book is ideally designed for information technology professionals, software developers, data analysts, graduate-level students, researchers, computer engineers, software engineers, IT specialists, and academicians.