R for Data Science

Download R for Data Science PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491910364
Total Pages : 521 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis R for Data Science by : Hadley Wickham

Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

CIENCIA DE DATOS. MODELOS CAUSALES

Download CIENCIA DE DATOS. MODELOS CAUSALES PDF Online Free

Author :
Publisher : CESAR PEREZ
ISBN 13 : 1716958547
Total Pages : 192 pages
Book Rating : 4.7/5 (169 download)

DOWNLOAD NOW!


Book Synopsis CIENCIA DE DATOS. MODELOS CAUSALES by :

Download or read book CIENCIA DE DATOS. MODELOS CAUSALES written by and published by CESAR PEREZ. This book was released on with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: En este libro se tratan las fases de Análisis, Interpretación y Validación de la Ciencia de Datos, profundizando en las técnicas de modelización predictiva a través de los modelos causales. Se incide en el estudio de la familia más general de los modelos causales o modelos en ecuaciones estructurales, que incluyen los modelos de regresión, los modelos con errores medida y los modelos multiecuacionales. Se estudiarán los modelos de análisis confirmatorio y el modelo completo de estructura de la covarianza a través de las etapas de especificación, identificación, estimación y diagnosis. Todas estas técnicas se ilustrarán con ejemplos significativos que serán resueltos utilizando el software más actual y habitual para trabajar con modelos causales como es SAS.

CIENCIA DE DATOS. DIAGNOSIS DE MODELOS ECONOMÉTRICOS PREDICTIVOS

Download CIENCIA DE DATOS. DIAGNOSIS DE MODELOS ECONOMÉTRICOS PREDICTIVOS PDF Online Free

Author :
Publisher : CESAR PEREZ
ISBN 13 : 1716967554
Total Pages : 272 pages
Book Rating : 4.7/5 (169 download)

DOWNLOAD NOW!


Book Synopsis CIENCIA DE DATOS. DIAGNOSIS DE MODELOS ECONOMÉTRICOS PREDICTIVOS by :

Download or read book CIENCIA DE DATOS. DIAGNOSIS DE MODELOS ECONOMÉTRICOS PREDICTIVOS written by and published by CESAR PEREZ. This book was released on with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: En este libro se tratan las fases de Análisis, Estimación y Validación de modelos profundizando en las técnicas de estimación y diagnosis para las tipologías de modelos más habitales. Se `profundiza en las problemáticas de la Autocorrelación, Heterescedasticidad, Multicolinealidad, Endogeneidad, Observaciones Influyentes, Normalidad Residual, Linealidad y otros problemas de diagnosis en los modelos predictivos de aprendizaje supervisado. Todas estas técnicas se ilustrarán con ejemplos significativos que serán resueltos utilizando el software más habitual, como R, SAS, SPSS y STATGRAPHICS.

Foundations of Data Science

Download Foundations of Data Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108617360
Total Pages : 433 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Data Science by : Avrim Blum

Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.

Introduction to Data Science

Download Introduction to Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000708039
Total Pages : 836 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Data Science by : Rafael A. Irizarry

Download or read book Introduction to Data Science written by Rafael A. Irizarry and published by CRC Press. This book was released on 2019-11-20 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.

Practical Statistics for Data Scientists

Download Practical Statistics for Data Scientists PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491952911
Total Pages : 322 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Practical Statistics for Data Scientists by : Peter Bruce

Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Python Data Science Handbook

Download Python Data Science Handbook PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491912138
Total Pages : 609 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Python Data Science Handbook by : Jake VanderPlas

Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Fundamentals de Ciencia de Polimeros

Download Fundamentals de Ciencia de Polimeros PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000717631
Total Pages : 488 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals de Ciencia de Polimeros by : Juan J. Iruin

Download or read book Fundamentals de Ciencia de Polimeros written by Juan J. Iruin and published by CRC Press. This book was released on 2019-08-16 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a new, basic introduction to polymer science. It is both comprehensive and readable. The authors are leading educators in this field with extensive backgrounds in industrial and academic polymer research. The text starts with a description of the types of microstructures found in polymer materials. This provides an understanding of some of the key features of the various mechanisms of homopolymerization and copolymerization which are discussed in following chapters. Also discussed in these chapters are the kinetics and statistics of polymerization, with a separate chapter on the characterization of chain structure by spectroscopic methods. The next part of the text deals with chain conformation, structure and morphology, leading to a discussion of crystallization, melting and glass transition. The discussion then moves from solid state to solution properties where solution thermodynamics is introduced. This provides the basis for discussion of the measurement of molecular weight by various solution methods. The final chapter deals with mechanical and rheological properties which are discussed from a phenomenological continuum approach and then in terms of a fundamental molecular perspective. Altogether, this new text provides a comprehensive, readable introduction to and overview of polymer science. It is well illustrated with schematics prepared for this text to help in the understanding of key concepts. It will provide a basic understanding of today's polymer science for technical and engineering personnel not already familiar with the subject, and a convenient update and overview for materials scientists.

Download  PDF Online Free

Author :
Publisher : Editorial Ink
ISBN 13 :
Total Pages : 331 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis by :

Download or read book written by and published by Editorial Ink. This book was released on with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Data Science

Download Data Science PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262535432
Total Pages : 282 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Data Science by : John D. Kelleher

Download or read book Data Science written by John D. Kelleher and published by MIT Press. This book was released on 2018-04-13 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

Data Science and Predictive Analytics

Download Data Science and Predictive Analytics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031174836
Total Pages : 940 pages
Book Rating : 4.0/5 (311 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Predictive Analytics by : Ivo D. Dinov

Download or read book Data Science and Predictive Analytics written by Ivo D. Dinov and published by Springer Nature. This book was released on 2023-02-16 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown notebooks. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings. Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analytics address specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book’s fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices. This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic notebooks, extensive appendices, and additional materials.

Data Science from Scratch

Download Data Science from Scratch PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491904399
Total Pages : 336 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Data Science from Scratch by : Joel Grus

Download or read book Data Science from Scratch written by Joel Grus and published by "O'Reilly Media, Inc.". This book was released on 2015-04-14 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Data for Development Profiles Official Development Assistance for Data and Statistical Systems

Download Data for Development Profiles Official Development Assistance for Data and Statistical Systems PDF Online Free

Author :
Publisher : OECD Publishing
ISBN 13 : 9264597840
Total Pages : 166 pages
Book Rating : 4.2/5 (645 download)

DOWNLOAD NOW!


Book Synopsis Data for Development Profiles Official Development Assistance for Data and Statistical Systems by : OECD

Download or read book Data for Development Profiles Official Development Assistance for Data and Statistical Systems written by OECD and published by OECD Publishing. This book was released on 2021-06-07 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sound and timely data and statistics are essential for designing better policies for better lives. When the right data are available and used by policy makers, they play a crucial role in managing crises, as revealed during the COVID-19 pandemic.

Human Systems Engineering and Design (IHSED2023): Future Trends and Applications

Download Human Systems Engineering and Design (IHSED2023): Future Trends and Applications PDF Online Free

Author :
Publisher : AHFE Conference
ISBN 13 : 1958651885
Total Pages : 564 pages
Book Rating : 4.9/5 (586 download)

DOWNLOAD NOW!


Book Synopsis Human Systems Engineering and Design (IHSED2023): Future Trends and Applications by : Waldemar Karwowski, Tareq Ahram, Mario Milicevic, Darko Etinger and Krunoslav Zubrinic

Download or read book Human Systems Engineering and Design (IHSED2023): Future Trends and Applications written by Waldemar Karwowski, Tareq Ahram, Mario Milicevic, Darko Etinger and Krunoslav Zubrinic and published by AHFE Conference. This book was released on 2023-09-27 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the 5th International Conference on Human Systems Engineering and Design (IHSED2023): Future Trends and Applications, September 27–29, 2023, University of Dubrovnik, Croatia

Gestión de datos de investigación

Download Gestión de datos de investigación PDF Online Free

Author :
Publisher : Editorial UOC
ISBN 13 : 8491164324
Total Pages : 156 pages
Book Rating : 4.4/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Gestión de datos de investigación by : Couto Corrêa, Fabiano

Download or read book Gestión de datos de investigación written by Couto Corrêa, Fabiano and published by Editorial UOC. This book was released on 2017-03-20 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt:

OECD Digital Government Studies Open Government Data in Mexico The Way Forward

Download OECD Digital Government Studies Open Government Data in Mexico The Way Forward PDF Online Free

Author :
Publisher : OECD Publishing
ISBN 13 : 9264297944
Total Pages : 91 pages
Book Rating : 4.2/5 (642 download)

DOWNLOAD NOW!


Book Synopsis OECD Digital Government Studies Open Government Data in Mexico The Way Forward by : OECD

Download or read book OECD Digital Government Studies Open Government Data in Mexico The Way Forward written by OECD and published by OECD Publishing. This book was released on 2018-05-02 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report analyses the progresses made by Mexico in implementing the recommendations of the OECD 2016 Open Government Data Review.

Data Feminism

Download Data Feminism PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262358530
Total Pages : 328 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Data Feminism by : Catherine D'Ignazio

Download or read book Data Feminism written by Catherine D'Ignazio and published by MIT Press. This book was released on 2020-03-31 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.