Author : Pierre Gaspard
Publisher : John Wiley & Sons
ISBN 13 : 0470142138
Total Pages : 984 pages
Book Rating : 4.4/5 (71 download)
Book Synopsis Chemical Reactions and Their Control on the Femtosecond Time Scale by : Pierre Gaspard
Download or read book Chemical Reactions and Their Control on the Femtosecond Time Scale written by Pierre Gaspard and published by John Wiley & Sons. This book was released on 2009-09-09 with total page 984 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuing the tradition of the Advances in Chemical Physics series, Volume 101: Chemical Reactions and Their Control on the Femtosecond Time Scale details the extraordinary findings reported at the XXth Solvay Conference on Chemistry, held at the Universite Libre de Bruxelles, Belgium, from November 28 to December 2, 1995. This new volume discusses the remarkable opportunities afforded by the femtosecond laser, focusing on the host of phenomena this laser has made it possible to observe. Examining molecules on the intrinsic time scale of their vibrations as well as their dissociative motions and electronic excitations represents only part of a broadened scientific window made possible by the femtosecond laser. The assembled studies, with follow-up discussions, reflect the many specialties and perspectives of the Conference's 65 participants as well as their optimism concerning the breadth of scientific discovery now open to them. The studies shed light on the laser's enhanced technical reach in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femto-chemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed: * Femtochemistry: chemical reaction dynamics and their control * Coherent control with femtosecond laser pulses * Femtosecond chemical dynamics in condensed phases * Control of quantum many-body dynamics * Experimental observation of laser control * Solvent dynamics and RRKM theory of clusters * High-resolution spectroscopy and intramolecular dynamics * Molecular Rydberg states and ZEKE spectroscopy * Transition-state spectroscopy and photodissociation * Quantum and semiclassical theories of chemical reaction rates. A fascinating and informative status report on the cutting-edge chemical research made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an indispensable volume for professionals and students alike. The femtosecond laser and chemistry's extraordinary new frontier of molecular motions observed on the scale of a quadrillionth of a second. Research chemists have only tapped the surface of the spectacular reach and precision of the femtosecond laser, a technology that has allowed them to observe the dynamics of molecules on the intrinsic time scale of their vibrations, dissociative motions, and electronic excitations. Volume 101 in the Advances in Chemical Physics series, Chemical Reactions and Their Control on the Femtosecond Time Scale details their extraordinary findings, presented at the XXth Solvay Conference on Chemistry, in Brussels. The studies reflect the work, in part, of the Conference's 65 participants, including many prominent contributors. Together they shed light on the laser's enhanced technical range in the area of coherent control of chemical reactions as well as of more general quantum systems. The theoretical fundamentals of femtochemistry, the unique behavior of the femtosecond laser, and a view toward future technological applications were also discussed. An exceptionally up-to-date examination of the chemical analyses made possible by the femtosecond laser, Chemical Reactions and Their Control on the Femtosecond Time Scale is an important reference for professionals and students interested in enhancing their research capabilities with this remarkable tool. From 1993 to 1996, she worked with Dr. P. Gaspard at the Universite Libre de Bruxelles, Belgium, on the application of new semiclassical techniques to elementary chemical reaction processes.