Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Business Cases In Statistical Decision Making
Download Business Cases In Statistical Decision Making full books in PDF, epub, and Kindle. Read online Business Cases In Statistical Decision Making ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Business Cases in Statistical Decision Making by : Lawrence H. Peters
Download or read book Business Cases in Statistical Decision Making written by Lawrence H. Peters and published by . This book was released on 1994 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting business problems in a case format, this text asks students to make good business decisions based on statistical information. The authors ask the student to evaluate realistic business situations and apply statistical reasoning to solve problems.
Book Synopsis Business Statistics for Contemporary Decision Making by : Ignacio Castillo
Download or read book Business Statistics for Contemporary Decision Making written by Ignacio Castillo and published by John Wiley & Sons. This book was released on 2023-05-08 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: Show students why business statistics is an increasingly important business skill through a student-friendly pedagogy. In this fourth Canadian edition of Business Statistics For Contemporary Decision Making authors Ken Black, Tiffany Bayley, and Ignacio Castillo uses current real-world data to equip students with the business analytics techniques and quantitative decision-making skills required to make smart decisions in today's workplace.
Book Synopsis Statistical Decision Problems by : Michael Zabarankin
Download or read book Statistical Decision Problems written by Michael Zabarankin and published by Springer Science & Business Media. This book was released on 2013-12-16 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Decision Problems presents a quick and concise introduction into the theory of risk, deviation and error measures that play a key role in statistical decision problems. It introduces state-of-the-art practical decision making through twenty-one case studies from real-life applications. The case studies cover a broad area of topics and the authors include links with source code and data, a very helpful tool for the reader. In its core, the text demonstrates how to use different factors to formulate statistical decision problems arising in various risk management applications, such as optimal hedging, portfolio optimization, cash flow matching, classification, and more. The presentation is organized into three parts: selected concepts of statistical decision theory, statistical decision problems, and case studies with portfolio safeguard. The text is primarily aimed at practitioners in the areas of risk management, decision making, and statistics. However, the inclusion of a fair bit of mathematical rigor renders this monograph an excellent introduction to the theory of general error, deviation, and risk measures for graduate students. It can be used as supplementary reading for graduate courses including statistical analysis, data mining, stochastic programming, financial engineering, to name a few. The high level of detail may serve useful to applied mathematicians, engineers, and statisticians interested in modeling and managing risk in various applications.
Book Synopsis Statistics for Making Decisions by : Nicholas T. Longford
Download or read book Statistics for Making Decisions written by Nicholas T. Longford and published by CRC Press. This book was released on 2021-03-30 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making decisions is a ubiquitous mental activity in our private and professional or public lives. It entails choosing one course of action from an available shortlist of options. Statistics for Making Decisions places decision making at the centre of statistical inference, proposing its theory as a new paradigm for statistical practice. The analysis in this paradigm is earnest about prior information and the consequences of the various kinds of errors that may be committed. Its conclusion is a course of action tailored to the perspective of the specific client or sponsor of the analysis. The author’s intention is a wholesale replacement of hypothesis testing, indicting it with the argument that it has no means of incorporating the consequences of errors which self-evidently matter to the client. The volume appeals to the analyst who deals with the simplest statistical problems of comparing two samples (which one has a greater mean or variance), or deciding whether a parameter is positive or negative. It combines highlighting the deficiencies of hypothesis testing with promoting a principled solution based on the idea of a currency for error, of which we want to spend as little as possible. This is implemented by selecting the option for which the expected loss is smallest (the Bayes rule). The price to pay is the need for a more detailed description of the options, and eliciting and quantifying the consequences (ramifications) of the errors. This is what our clients do informally and often inexpertly after receiving outputs of the analysis in an established format, such as the verdict of a hypothesis test or an estimate and its standard error. As a scientific discipline and profession, statistics has a potential to do this much better and deliver to the client a more complete and more relevant product. Nicholas T. Longford is a senior statistician at Imperial College, London, specialising in statistical methods for neonatal medicine. His interests include causal analysis of observational studies, decision theory, and the contest of modelling and design in data analysis. His longer-term appointments in the past include Educational Testing Service, Princeton, NJ, USA, de Montfort University, Leicester, England, and directorship of SNTL, a statistics research and consulting company. He is the author of over 100 journal articles and six other monographs on a variety of topics in applied statistics.
Book Synopsis Business Cases in Statistical Decision Making by : Lawrence H. Peters
Download or read book Business Cases in Statistical Decision Making written by Lawrence H. Peters and published by Macmillan College. This book was released on 1994-01-01 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Statistics for Business by : Robert Stine
Download or read book Statistics for Business written by Robert Stine and published by Pearson. This book was released on 2015-08-17 with total page 867 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Statistics for Business: Decision Making and Analysis, authors Robert Stine and Dean Foster of the University of Pennsylvania’s Wharton School, take a sophisticated approach to teaching statistics in the context of making good business decisions. The authors show students how to recognize and understand each business question, use statistical tools to do the analysis, and how to communicate their results clearly and concisely. In addition to providing cases and real data to demonstrate real business situations, this text provides resources to support understanding and engagement. A successful problem-solving framework in the 4-M Examples (Motivation, Method, Mechanics, Message) model a clear outline for solving problems, new What Do You Think questions give students an opportunity to stop and check their understanding as they read, and new learning objectives guide students through each chapter and help them to review major goals. Software Hints provide instructions for using the most up-to-date technology packages. The Second Edition also includes expanded coverage and instruction of Excel® 2010.
Book Synopsis Business Statistics by : David F. Groebner
Download or read book Business Statistics written by David F. Groebner and published by . This book was released on 2005 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive text presents descriptive and inferential statistics with an assortment of business examples and real data, and an emphasis on decision-making. The accompanying CD-ROM presents Excel and Minitab tutorials as well as data files for all the exercises and exmaples presented.
Book Synopsis Statistical Thinking in Business by : J. A. John
Download or read book Statistical Thinking in Business written by J. A. John and published by CRC Press. This book was released on 2005-08-29 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Business students need the ability to think statistically about how to deal with uncertainty and its effect on decision-making in business and management. Traditional statistics courses and textbooks tend to focus on probability, mathematical detail, and heavy computation, and thus fail to meet the needs of future managers. Statistical Thinking in
Book Synopsis Basic Business Statistics by : Robert A. Stine
Download or read book Basic Business Statistics written by Robert A. Stine and published by Springer. This book was released on 2013-03-14 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introduction to Statistical Decision Theory by : John Winsor Pratt
Download or read book Introduction to Statistical Decision Theory written by John Winsor Pratt and published by . This book was released on 1994 with total page 875 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Statistical Case Studies by : Roxy Peck
Download or read book Statistical Case Studies written by Roxy Peck and published by SIAM. This book was released on 1998-01-01 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains 20 case studies that use actual data sets that have not been simplified for classroom use.
Book Synopsis Data Mining and Statistics for Decision Making by : Stéphane Tufféry
Download or read book Data Mining and Statistics for Decision Making written by Stéphane Tufféry and published by John Wiley & Sons. This book was released on 2011-03-23 with total page 738 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques. Starts from basic principles up to advanced concepts. Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software. Gives practical tips for data mining implementation to solve real world problems. Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring. Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.
Book Synopsis Statistical Thinking by : Roger W. Hoerl
Download or read book Statistical Thinking written by Roger W. Hoerl and published by John Wiley & Sons. This book was released on 2012-04-09 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: How statistical thinking and methodology can help you make crucial business decisions Straightforward and insightful, Statistical Thinking: Improving Business Performance, Second Edition, prepares you for business leadership by developing your capacity to apply statistical thinking to improve business processes. Unique and compelling, this book shows you how to derive actionable conclusions from data analysis, solve real problems, and improve real processes. Here, you'll discover how to implement statistical thinking and methodology in your work to improve business performance. Explores why statistical thinking is necessary and helpful Provides case studies that illustrate how to integrate several statistical tools into the decision-making process Facilitates and encourages an experiential learning environment to enable you to apply material to actual problems With an in-depth discussion of JMP® software, the new edition of this important book focuses on skills to improve business processes, including collecting data appropriate for a specified purpose, recognizing limitations in existing data, and understanding the limitations of statistical analyses.
Book Synopsis Introduction to Statistical Decision Theory by : Silvia Bacci
Download or read book Introduction to Statistical Decision Theory written by Silvia Bacci and published by CRC Press. This book was released on 2019-07-11 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Statistical Decision Theory: Utility Theory and Causal Analysis provides the theoretical background to approach decision theory from a statistical perspective. It covers both traditional approaches, in terms of value theory and expected utility theory, and recent developments, in terms of causal inference. The book is specifically designed to appeal to students and researchers that intend to acquire a knowledge of statistical science based on decision theory. Features Covers approaches for making decisions under certainty, risk, and uncertainty Illustrates expected utility theory and its extensions Describes approaches to elicit the utility function Reviews classical and Bayesian approaches to statistical inference based on decision theory Discusses the role of causal analysis in statistical decision theory
Book Synopsis Management Decision-Making, Big Data and Analytics by : Simone Gressel
Download or read book Management Decision-Making, Big Data and Analytics written by Simone Gressel and published by SAGE. This book was released on 2020-10-12 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accessible and concise, this exciting new textbook examines data analytics from a managerial and organizational perspective and looks at how they can help managers become more effective decision-makers. The book successfully combines theory with practical application, featuring case studies, examples and a ‘critical incidents’ feature that make these topics engaging and relevant for students of business and management. The book features chapters on cutting-edge topics, including: • Big data • Analytics • Managing emerging technologies and decision-making • Managing the ethics, security, privacy and legal aspects of data-driven decision-making The book is accompanied by an Instructor’s Manual, PowerPoint slides and access to journal articles. Suitable for management students studying business analytics and decision-making at undergraduate, postgraduate and MBA levels.
Download or read book Noise written by Daniel Kahneman and published by Little, Brown. This book was released on 2021-05-18 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Nobel Prize-winning author of Thinking, Fast and Slow and the coauthor of Nudge, a revolutionary exploration of why people make bad judgments and how to make better ones—"a tour de force” (New York Times). Imagine that two doctors in the same city give different diagnoses to identical patients—or that two judges in the same courthouse give markedly different sentences to people who have committed the same crime. Suppose that different interviewers at the same firm make different decisions about indistinguishable job applicants—or that when a company is handling customer complaints, the resolution depends on who happens to answer the phone. Now imagine that the same doctor, the same judge, the same interviewer, or the same customer service agent makes different decisions depending on whether it is morning or afternoon, or Monday rather than Wednesday. These are examples of noise: variability in judgments that should be identical. In Noise, Daniel Kahneman, Olivier Sibony, and Cass R. Sunstein show the detrimental effects of noise in many fields, including medicine, law, economic forecasting, forensic science, bail, child protection, strategy, performance reviews, and personnel selection. Wherever there is judgment, there is noise. Yet, most of the time, individuals and organizations alike are unaware of it. They neglect noise. With a few simple remedies, people can reduce both noise and bias, and so make far better decisions. Packed with original ideas, and offering the same kinds of research-based insights that made Thinking, Fast and Slow and Nudge groundbreaking New York Times bestsellers, Noise explains how and why humans are so susceptible to noise in judgment—and what we can do about it.
Book Synopsis Business Statistics for Competitive Advantage with Excel and JMP by : Cynthia Fraser
Download or read book Business Statistics for Competitive Advantage with Excel and JMP written by Cynthia Fraser and published by Springer Nature. This book was released on with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: