Building a Recommendation System with R

Download Building a Recommendation System with R PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1783554509
Total Pages : 158 pages
Book Rating : 4.7/5 (835 download)

DOWNLOAD NOW!


Book Synopsis Building a Recommendation System with R by : Suresh K. Gorakala

Download or read book Building a Recommendation System with R written by Suresh K. Gorakala and published by Packt Publishing Ltd. This book was released on 2015-09-29 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the art of building robust and powerful recommendation engines using R About This Book Learn to exploit various data mining techniques Understand some of the most popular recommendation techniques This is a step-by-step guide full of real-world examples to help you build and optimize recommendation engines Who This Book Is For If you are a competent developer with some knowledge of machine learning and R, and want to further enhance your skills to build recommendation systems, then this book is for you. What You Will Learn Get to grips with the most important branches of recommendation Understand various data processing and data mining techniques Evaluate and optimize the recommendation algorithms Prepare and structure the data before building models Discover different recommender systems along with their implementation in R Explore various evaluation techniques used in recommender systems Get to know about recommenderlab, an R package, and understand how to optimize it to build efficient recommendation systems In Detail A recommendation system performs extensive data analysis in order to generate suggestions to its users about what might interest them. R has recently become one of the most popular programming languages for the data analysis. Its structure allows you to interactively explore the data and its modules contain the most cutting-edge techniques thanks to its wide international community. This distinctive feature of the R language makes it a preferred choice for developers who are looking to build recommendation systems. The book will help you understand how to build recommender systems using R. It starts off by explaining the basics of data mining and machine learning. Next, you will be familiarized with how to build and optimize recommender models using R. Following that, you will be given an overview of the most popular recommendation techniques. Finally, you will learn to implement all the concepts you have learned throughout the book to build a recommender system. Style and approach This is a step-by-step guide that will take you through a series of core tasks. Every task is explained in detail with the help of practical examples.

Recommender Systems Handbook

Download Recommender Systems Handbook PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 148997637X
Total Pages : 1008 pages
Book Rating : 4.4/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Recommender Systems Handbook by : Francesco Ricci

Download or read book Recommender Systems Handbook written by Francesco Ricci and published by Springer. This book was released on 2015-11-17 with total page 1008 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of a well-received text, with 20 new chapters, presents a coherent and unified repository of recommender systems’ major concepts, theories, methodologies, trends, and challenges. A variety of real-world applications and detailed case studies are included. In addition to wholesale revision of the existing chapters, this edition includes new topics including: decision making and recommender systems, reciprocal recommender systems, recommender systems in social networks, mobile recommender systems, explanations for recommender systems, music recommender systems, cross-domain recommendations, privacy in recommender systems, and semantic-based recommender systems. This multi-disciplinary handbook involves world-wide experts from diverse fields such as artificial intelligence, human-computer interaction, information retrieval, data mining, mathematics, statistics, adaptive user interfaces, decision support systems, psychology, marketing, and consumer behavior. Theoreticians and practitioners from these fields will find this reference to be an invaluable source of ideas, methods and techniques for developing more efficient, cost-effective and accurate recommender systems.

Statistical Methods for Recommender Systems

Download Statistical Methods for Recommender Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316565130
Total Pages : 317 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Statistical Methods for Recommender Systems by : Deepak K. Agarwal

Download or read book Statistical Methods for Recommender Systems written by Deepak K. Agarwal and published by Cambridge University Press. This book was released on 2016-02-24 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with.

Mahout in Action

Download Mahout in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638355371
Total Pages : 616 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Mahout in Action by : Sean Owen

Download or read book Mahout in Action written by Sean Owen and published by Simon and Schuster. This book was released on 2011-10-04 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes a free audio- and video-enhanced ebook. About the Technology A computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source machine learning project, captures the core algorithms of recommendation systems, classification, and clustering in ready-to-use, scalable libraries. With Mahout, you can immediately apply to your own projects the machine learning techniques that drive Amazon, Netflix, and others. About this Book This book covers machine learning using Apache Mahout. Based on experience with real-world applications, it introduces practical use cases and illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability and how to apply these techniques against large data sets using the Apache Hadoop framework. This book is written for developers familiar with Java -- no prior experience with Mahout is assumed. Owners of a Manning pBook purchased anywhere in the world can download a free eBook from manning.com at any time. They can do so multiple times and in any or all formats available (PDF, ePub or Kindle). To do so, customers must register their printed copy on Manning's site by creating a user account and then following instructions printed on the pBook registration insert at the front of the book. What's Inside Use group data to make individual recommendations Find logical clusters within your data Filter and refine with on-the-fly classification Free audio and video extras Table of Contents Meet Apache Mahout PART 1 RECOMMENDATIONS Introducing recommenders Representing recommender data Making recommendations Taking recommenders to production Distributing recommendation computations PART 2 CLUSTERING Introduction to clustering Representing data Clustering algorithms in Mahout Evaluating and improving clustering quality Taking clustering to production Real-world applications of clustering PART 3 CLASSIFICATION Introduction to classification Training a classifier Evaluating and tuning a classifier Deploying a classifier Case study: Shop It To Me

R Machine Learning Projects

Download R Machine Learning Projects PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789806097
Total Pages : 325 pages
Book Rating : 4.7/5 (898 download)

DOWNLOAD NOW!


Book Synopsis R Machine Learning Projects by : Dr. Sunil Kumar Chinnamgari

Download or read book R Machine Learning Projects written by Dr. Sunil Kumar Chinnamgari and published by Packt Publishing Ltd. This book was released on 2019-01-14 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master a range of machine learning domains with real-world projects using TensorFlow for R, H2O, MXNet, and more Key FeaturesMaster machine learning, deep learning, and predictive modeling concepts in R 3.5Build intelligent end-to-end projects for finance, retail, social media, and a variety of domainsImplement smart cognitive models with helpful tips and best practicesBook Description R is one of the most popular languages when it comes to performing computational statistics (statistical computing) easily and exploring the mathematical side of machine learning. With this book, you will leverage the R ecosystem to build efficient machine learning applications that carry out intelligent tasks within your organization. This book will help you test your knowledge and skills, guiding you on how to build easily through to complex machine learning projects. You will first learn how to build powerful machine learning models with ensembles to predict employee attrition. Next, you’ll implement a joke recommendation engine and learn how to perform sentiment analysis on Amazon reviews. You’ll also explore different clustering techniques to segment customers using wholesale data. In addition to this, the book will get you acquainted with credit card fraud detection using autoencoders, and reinforcement learning to make predictions and win on a casino slot machine. By the end of the book, you will be equipped to confidently perform complex tasks to build research and commercial projects for automated operations. What you will learnExplore deep neural networks and various frameworks that can be used in RDevelop a joke recommendation engine to recommend jokes that match users’ tastesCreate powerful ML models with ensembles to predict employee attritionBuild autoencoders for credit card fraud detectionWork with image recognition and convolutional neural networks Make predictions for casino slot machine using reinforcement learningImplement NLP techniques for sentiment analysis and customer segmentationWho this book is for If you’re a data analyst, data scientist, or machine learning developer who wants to master machine learning concepts using R by building real-world projects, this is the book for you. Each project will help you test your skills in implementing machine learning algorithms and techniques. A basic understanding of machine learning and working knowledge of R programming is necessary to get the most out of this book.

Building Recommender Systems with Machine Learning and AI.

Download Building Recommender Systems with Machine Learning and AI. PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Building Recommender Systems with Machine Learning and AI. by : Frank Kane

Download or read book Building Recommender Systems with Machine Learning and AI. written by Frank Kane and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Automated recommendations are everywhere: Netflix, Amazon, YouTube, and more. Recommender systems learn about your unique interests and show the products or content they think you'll like best. Discover how to build your own recommender systems from one of the pioneers in the field. Frank Kane spent over nine years at Amazon, where he led the development of many of the company's personalized product recommendation technologies. In this course, he covers recommendation algorithms based on neighborhood-based collaborative filtering and more modern techniques, including matrix factorization and even deep learning with artificial neural networks. Along the way, you can learn from Frank's extensive industry experience and understand the real-world challenges of applying these algorithms at a large scale with real-world data. You can also go hands-on, developing your own framework to test algorithms and building your own neural networks using technologies like Amazon DSSTNE, AWS SageMaker, and TensorFlow.

Data Mining for Business Analytics

Download Data Mining for Business Analytics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118729277
Total Pages : 560 pages
Book Rating : 4.1/5 (187 download)

DOWNLOAD NOW!


Book Synopsis Data Mining for Business Analytics by : Galit Shmueli

Download or read book Data Mining for Business Analytics written by Galit Shmueli and published by John Wiley & Sons. This book was released on 2016-04-18 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: An applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft® Office Excel® add-in XLMiner® to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: Real-world examples to build a theoretical and practical understanding of key data mining methods End-of-chapter exercises that help readers better understand the presented material Data-rich case studies to illustrate various applications of data mining techniques Completely new chapters on social network analysis and text mining A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint® slides https://www.dataminingbook.com Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology. Praise for the Second Edition "...full of vivid and thought-provoking anecdotes... needs to be read by anyone with a serious interest in research and marketing."– Research Magazine "Shmueli et al. have done a wonderful job in presenting the field of data mining - a welcome addition to the literature." – ComputingReviews.com "Excellent choice for business analysts...The book is a perfect fit for its intended audience." – Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks and book chapters. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad for 15 years.

Encyclopedia of Machine Learning

Download Encyclopedia of Machine Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387307680
Total Pages : 1061 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Encyclopedia of Machine Learning by : Claude Sammut

Download or read book Encyclopedia of Machine Learning written by Claude Sammut and published by Springer Science & Business Media. This book was released on 2011-03-28 with total page 1061 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.

Recommender Systems

Download Recommender Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319296590
Total Pages : 518 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Recommender Systems by : Charu C. Aggarwal

Download or read book Recommender Systems written by Charu C. Aggarwal and published by Springer. This book was released on 2016-03-28 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively covers the topic of recommender systems, which provide personalized recommendations of products or services to users based on their previous searches or purchases. Recommender system methods have been adapted to diverse applications including query log mining, social networking, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. The chapters of this book are organized into three categories: Algorithms and evaluation: These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods, content-based methods, knowledge-based methods, ensemble-based methods, and evaluation. Recommendations in specific domains and contexts: the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. Advanced topics and applications: Various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses are discussed. In addition, recent topics, such as learning to rank, multi-armed bandits, group systems, multi-criteria systems, and active learning systems, are introduced together with applications. Although this book primarily serves as a textbook, it will also appeal to industrial practitioners and researchers due to its focus on applications and references. Numerous examples and exercises have been provided, and a solution manual is available for instructors.

Hands-On Recommendation Systems with Python

Download Hands-On Recommendation Systems with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788992539
Total Pages : 141 pages
Book Rating : 4.7/5 (889 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Recommendation Systems with Python by : Rounak Banik

Download or read book Hands-On Recommendation Systems with Python written by Rounak Banik and published by Packt Publishing Ltd. This book was released on 2018-07-31 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: With Hands-On Recommendation Systems with Python, learn the tools and techniques required in building various kinds of powerful recommendation systems (collaborative, knowledge and content based) and deploying them to the web Key Features Build industry-standard recommender systems Only familiarity with Python is required No need to wade through complicated machine learning theory to use this book Book Description Recommendation systems are at the heart of almost every internet business today; from Facebook to Netflix to Amazon. Providing good recommendations, whether it's friends, movies, or groceries, goes a long way in defining user experience and enticing your customers to use your platform. This book shows you how to do just that. You will learn about the different kinds of recommenders used in the industry and see how to build them from scratch using Python. No need to wade through tons of machine learning theory—you'll get started with building and learning about recommenders as quickly as possible.. In this book, you will build an IMDB Top 250 clone, a content-based engine that works on movie metadata. You'll use collaborative filters to make use of customer behavior data, and a Hybrid Recommender that incorporates content based and collaborative filtering techniques With this book, all you need to get started with building recommendation systems is a familiarity with Python, and by the time you're fnished, you will have a great grasp of how recommenders work and be in a strong position to apply the techniques that you will learn to your own problem domains. What you will learn Get to grips with the different kinds of recommender systems Master data-wrangling techniques using the pandas library Building an IMDB Top 250 Clone Build a content based engine to recommend movies based on movie metadata Employ data-mining techniques used in building recommenders Build industry-standard collaborative filters using powerful algorithms Building Hybrid Recommenders that incorporate content based and collaborative fltering Who this book is for If you are a Python developer and want to develop applications for social networking, news personalization or smart advertising, this is the book for you. Basic knowledge of machine learning techniques will be helpful, but not mandatory.

The Adaptive Web

Download The Adaptive Web PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540720782
Total Pages : 770 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis The Adaptive Web by : Peter Brusilovski

Download or read book The Adaptive Web written by Peter Brusilovski and published by Springer Science & Business Media. This book was released on 2007-04-24 with total page 770 pages. Available in PDF, EPUB and Kindle. Book excerpt: This state-of-the-art survey provides a systematic overview of the ideas and techniques of the adaptive Web and serves as a central source of information for researchers, practitioners, and students. The volume constitutes a comprehensive and carefully planned collection of chapters that map out the most important areas of the adaptive Web, each solicited from the experts and leaders in the field.

Recommendation Systems in Software Engineering

Download Recommendation Systems in Software Engineering PDF Online Free

Author :
Publisher : Springer Science & Business
ISBN 13 : 3642451357
Total Pages : 560 pages
Book Rating : 4.6/5 (424 download)

DOWNLOAD NOW!


Book Synopsis Recommendation Systems in Software Engineering by : Martin P. Robillard

Download or read book Recommendation Systems in Software Engineering written by Martin P. Robillard and published by Springer Science & Business. This book was released on 2014-04-30 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the growth of public and private data stores and the emergence of off-the-shelf data-mining technology, recommendation systems have emerged that specifically address the unique challenges of navigating and interpreting software engineering data. This book collects, structures and formalizes knowledge on recommendation systems in software engineering. It adopts a pragmatic approach with an explicit focus on system design, implementation, and evaluation. The book is divided into three parts: “Part I – Techniques” introduces basics for building recommenders in software engineering, including techniques for collecting and processing software engineering data, but also for presenting recommendations to users as part of their workflow. “Part II – Evaluation” summarizes methods and experimental designs for evaluating recommendations in software engineering. “Part III – Applications” describes needs, issues and solution concepts involved in entire recommendation systems for specific software engineering tasks, focusing on the engineering insights required to make effective recommendations. The book is complemented by the webpage rsse.org/book, which includes free supplemental materials for readers of this book and anyone interested in recommendation systems in software engineering, including lecture slides, data sets, source code, and an overview of people, groups, papers and tools with regard to recommendation systems in software engineering. The book is particularly well-suited for graduate students and researchers building new recommendation systems for software engineering applications or in other high-tech fields. It may also serve as the basis for graduate courses on recommendation systems, applied data mining or software engineering. Software engineering practitioners developing recommendation systems or similar applications with predictive functionality will also benefit from the broad spectrum of topics covered.

Predicting movie ratings and recommender systems

Download Predicting movie ratings and recommender systems PDF Online Free

Author :
Publisher : Arkadiusz Paterek
ISBN 13 :
Total Pages : 196 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Predicting movie ratings and recommender systems by : Arkadiusz Paterek

Download or read book Predicting movie ratings and recommender systems written by Arkadiusz Paterek and published by Arkadiusz Paterek. This book was released on 2012-06-19 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: A 195-page monograph by a top-1% Netflix Prize contestant. Learn about the famous machine learning competition. Improve your machine learning skills. Learn how to build recommender systems. What's inside:introduction to predictive modeling,a comprehensive summary of the Netflix Prize, the most known machine learning competition, with a $1M prize,detailed description of a top-50 Netflix Prize solution predicting movie ratings,summary of the most important methods published - RMSE's from different papers listed and grouped in one place,detailed analysis of matrix factorizations / regularized SVD,how to interpret the factorization results - new, most informative movie genres,how to adapt the algorithms developed for the Netflix Prize to calculate good quality personalized recommendations,dealing with the cold-start: simple content-based augmentation,description of two rating-based recommender systems,commentary on everything: novel and unique insights, know-how from over 9 years of practicing and analysing predictive modeling.

Express in Action

Download Express in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 163835331X
Total Pages : 373 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Express in Action by : Evan Hahn

Download or read book Express in Action written by Evan Hahn and published by Simon and Schuster. This book was released on 2016-04-01 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Express in Action is a carefully designed tutorial that teaches you how to build web applications using Node and Express. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Express.js is a web application framework for Node.js. Express organizes your server-side JavaScript into testable, maintainable modules. It provides a powerful set of features to efficiently manage routes, requests, and views along with beautiful boilerplate for your web applications. Express helps you concentrate on what your application does instead of managing time-consuming technical details. About the Book Express in Action teaches you how to build web applications using Node and Express. It starts by introducing Node's powerful traits and shows you how they map to the features of Express. You'll explore key development techniques, meet the rich ecosystem of companion tools and libraries, and get a glimpse into its inner workings. By the end of the book, you'll be able to use Express to build a Node app and know how to test it, hook it up to a database, and automate the dev process. What's Inside Simplify Node app setup with Express Testing Express applications Use Express for easy access to Node features Data storage with MongoDB Covers Express 4 and Express 5 alpha About the Reader To get the most out of this book, you'll need to know the basics of web application design and be proficient with JavaScript. About the Author Evan Hahn is an active member of the Node and Express community and contributes to many open source JavaScript projects. Table of Contents PART 1 INTRO What is Express? The basics of Node.js Foundations of Express PART 2 CORE Middleware Routing Building APIs Views and templates: Pug and EJS PART 3 EXPRESS IN CONTEXT Persisting your data with MongoDB Testing Express applications Security Deployment: assets and Heroku Best practices

Collaborative Filtering Recommender Systems

Download Collaborative Filtering Recommender Systems PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 1601984421
Total Pages : 104 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Collaborative Filtering Recommender Systems by : Michael D. Ekstrand

Download or read book Collaborative Filtering Recommender Systems written by Michael D. Ekstrand and published by Now Publishers Inc. This book was released on 2011 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collaborative Filtering Recommender Systems discusses a wide variety of the recommender choices available and their implications, providing both practitioners and researchers with an introduction to the important issues underlying recommenders and current best practices for addressing these issues.

Recommender Systems

Download Recommender Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139492594
Total Pages : pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Recommender Systems by : Dietmar Jannach

Download or read book Recommender Systems written by Dietmar Jannach and published by Cambridge University Press. This book was released on 2010-09-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this age of information overload, people use a variety of strategies to make choices about what to buy, how to spend their leisure time, and even whom to date. Recommender systems automate some of these strategies with the goal of providing affordable, personal, and high-quality recommendations. This book offers an overview of approaches to developing state-of-the-art recommender systems. The authors present current algorithmic approaches for generating personalized buying proposals, such as collaborative and content-based filtering, as well as more interactive and knowledge-based approaches. They also discuss how to measure the effectiveness of recommender systems and illustrate the methods with practical case studies. The final chapters cover emerging topics such as recommender systems in the social web and consumer buying behavior theory. Suitable for computer science researchers and students interested in getting an overview of the field, this book will also be useful for professionals looking for the right technology to build real-world recommender systems.

Group Recommender Systems

Download Group Recommender Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031449436
Total Pages : 180 pages
Book Rating : 4.0/5 (314 download)

DOWNLOAD NOW!


Book Synopsis Group Recommender Systems by : Alexander Felfernig

Download or read book Group Recommender Systems written by Alexander Felfernig and published by Springer Nature. This book was released on 2023-11-27 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses different aspects of group recommender systems, which are systems that help to identify recommendations for groups instead of single users. In this context, the authors present different related techniques and applications. The book includes in-depth summaries of group recommendation algorithms, related industrial applications, different aspects of preference construction and explanations, user interface aspects of group recommender systems, and related psychological aspects that play a crucial role in group decision scenarios.