Blueprints for Text Analytics Using Python

Download Blueprints for Text Analytics Using Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492074039
Total Pages : 457 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Blueprints for Text Analytics Using Python by : Jens Albrecht

Download or read book Blueprints for Text Analytics Using Python written by Jens Albrecht and published by "O'Reilly Media, Inc.". This book was released on 2020-12-04 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turning text into valuable information is essential for businesses looking to gain a competitive advantage. With recent improvements in natural language processing (NLP), users now have many options for solving complex challenges. But it's not always clear which NLP tools or libraries would work for a business's needs, or which techniques you should use and in what order. This practical book provides data scientists and developers with blueprints for best practice solutions to common tasks in text analytics and natural language processing. Authors Jens Albrecht, Sidharth Ramachandran, and Christian Winkler provide real-world case studies and detailed code examples in Python to help you get started quickly. Extract data from APIs and web pages Prepare textual data for statistical analysis and machine learning Use machine learning for classification, topic modeling, and summarization Explain AI models and classification results Explore and visualize semantic similarities with word embeddings Identify customer sentiment in product reviews Create a knowledge graph based on named entities and their relations

Text Analytics with Python

Download Text Analytics with Python PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484243544
Total Pages : 688 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Text Analytics with Python by : Dipanjan Sarkar

Download or read book Text Analytics with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2019-05-21 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage Natural Language Processing (NLP) in Python and learn how to set up your own robust environment for performing text analytics. This second edition has gone through a major revamp and introduces several significant changes and new topics based on the recent trends in NLP. You’ll see how to use the latest state-of-the-art frameworks in NLP, coupled with machine learning and deep learning models for supervised sentiment analysis powered by Python to solve actual case studies. Start by reviewing Python for NLP fundamentals on strings and text data and move on to engineering representation methods for text data, including both traditional statistical models and newer deep learning-based embedding models. Improved techniques and new methods around parsing and processing text are discussed as well. Text summarization and topic models have been overhauled so the book showcases how to build, tune, and interpret topic models in the context of an interest dataset on NIPS conference papers. Additionally, the book covers text similarity techniques with a real-world example of movie recommenders, along with sentiment analysis using supervised and unsupervised techniques. There is also a chapter dedicated to semantic analysis where you’ll see how to build your own named entity recognition (NER) system from scratch. While the overall structure of the book remains the same, the entire code base, modules, and chapters has been updated to the latest Python 3.x release. What You'll Learn • Understand NLP and text syntax, semantics and structure• Discover text cleaning and feature engineering• Review text classification and text clustering • Assess text summarization and topic models• Study deep learning for NLP Who This Book Is For IT professionals, data analysts, developers, linguistic experts, data scientists and engineers and basically anyone with a keen interest in linguistics, analytics and generating insights from textual data.

Applied Text Analysis with Python

Download Applied Text Analysis with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491962992
Total Pages : 328 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Applied Text Analysis with Python by : Benjamin Bengfort

Download or read book Applied Text Analysis with Python written by Benjamin Bengfort and published by "O'Reilly Media, Inc.". This book was released on 2018-06-11 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist’s approach to building language-aware products with applied machine learning. You’ll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you’ll be equipped with practical methods to solve any number of complex real-world problems. Preprocess and vectorize text into high-dimensional feature representations Perform document classification and topic modeling Steer the model selection process with visual diagnostics Extract key phrases, named entities, and graph structures to reason about data in text Build a dialog framework to enable chatbots and language-driven interaction Use Spark to scale processing power and neural networks to scale model complexity

Natural Language Processing with Python

Download Natural Language Processing with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 0596555717
Total Pages : 506 pages
Book Rating : 4.5/5 (965 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with Python by : Steven Bird

Download or read book Natural Language Processing with Python written by Steven Bird and published by "O'Reilly Media, Inc.". This book was released on 2009-06-12 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Machine Learning and Data Science Blueprints for Finance

Download Machine Learning and Data Science Blueprints for Finance PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492073008
Total Pages : 426 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Data Science Blueprints for Finance by : Hariom Tatsat

Download or read book Machine Learning and Data Science Blueprints for Finance written by Hariom Tatsat and published by "O'Reilly Media, Inc.". This book was released on 2020-10-01 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations

Blueprints for Text Analytics Using Python

Download Blueprints for Text Analytics Using Python PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492074055
Total Pages : 422 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Blueprints for Text Analytics Using Python by : Jens Albrecht

Download or read book Blueprints for Text Analytics Using Python written by Jens Albrecht and published by O'Reilly Media. This book was released on 2020-12-04 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turning text into valuable information is essential for businesses looking to gain a competitive advantage. With recent improvements in natural language processing (NLP), users now have many options for solving complex challenges. But it's not always clear which NLP tools or libraries would work for a business's needs, or which techniques you should use and in what order. This practical book provides data scientists and developers with blueprints for best practice solutions to common tasks in text analytics and natural language processing. Authors Jens Albrecht, Sidharth Ramachandran, and Christian Winkler provide real-world case studies and detailed code examples in Python to help you get started quickly. Extract data from APIs and web pages Prepare textual data for statistical analysis and machine learning Use machine learning for classification, topic modeling, and summarization Explain AI models and classification results Explore and visualize semantic similarities with word embeddings Identify customer sentiment in product reviews Create a knowledge graph based on named entities and their relations

Text Analytics with Python

Download Text Analytics with Python PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484223888
Total Pages : 397 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Text Analytics with Python by : Dipanjan Sarkar

Download or read book Text Analytics with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2016-11-30 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Derive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. What You Will Learn: Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure Build a text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summarization, and cluster popular movie synopses and analyze the sentiment of movie reviews Implement Python and popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern Who This Book Is For : IT professionals, analysts, developers, linguistic experts, data scientists, and anyone with a keen interest in linguistics, analytics, and generating insights from textual data

Foundations for Analytics with Python

Download Foundations for Analytics with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491922508
Total Pages : 351 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Foundations for Analytics with Python by : Clinton W. Brownley

Download or read book Foundations for Analytics with Python written by Clinton W. Brownley and published by "O'Reilly Media, Inc.". This book was released on 2016-08-16 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you’re like many of Excel’s 750 million users, you want to do more with your data—like repeating similar analyses over hundreds of files, or combining data in many files for analysis at one time. This practical guide shows ambitious non-programmers how to automate and scale the processing and analysis of data in different formats—by using Python. After author Clinton Brownley takes you through Python basics, you’ll be able to write simple scripts for processing data in spreadsheets as well as databases. You’ll also learn how to use several Python modules for parsing files, grouping data, and producing statistics. No programming experience is necessary. Create and run your own Python scripts by learning basic syntax Use Python’s csv module to read and parse CSV files Read multiple Excel worksheets and workbooks with the xlrd module Perform database operations in MySQL or with the mysqlclient module Create Python applications to find specific records, group data, and parse text files Build statistical graphs and plots with matplotlib, pandas, ggplot, and seaborn Produce summary statistics, and estimate regression and classification models Schedule your scripts to run automatically in both Windows and Mac environments

Hands-On Natural Language Processing with Python

Download Hands-On Natural Language Processing with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789135915
Total Pages : 307 pages
Book Rating : 4.7/5 (891 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Natural Language Processing with Python by : Rajesh Arumugam

Download or read book Hands-On Natural Language Processing with Python written by Rajesh Arumugam and published by Packt Publishing Ltd. This book was released on 2018-07-18 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foster your NLP applications with the help of deep learning, NLTK, and TensorFlow Key Features Weave neural networks into linguistic applications across various platforms Perform NLP tasks and train its models using NLTK and TensorFlow Boost your NLP models with strong deep learning architectures such as CNNs and RNNs Book Description Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts. What you will learn Implement semantic embedding of words to classify and find entities Convert words to vectors by training in order to perform arithmetic operations Train a deep learning model to detect classification of tweets and news Implement a question-answer model with search and RNN models Train models for various text classification datasets using CNN Implement WaveNet a deep generative model for producing a natural-sounding voice Convert voice-to-text and text-to-voice Train a model to convert speech-to-text using DeepSpeech Who this book is for Hands-on Natural Language Processing with Python is for you if you are a developer, machine learning or an NLP engineer who wants to build a deep learning application that leverages NLP techniques. This comprehensive guide is also useful for deep learning users who want to extend their deep learning skills in building NLP applications. All you need is the basics of machine learning and Python to enjoy the book.

Hands-On Python Natural Language Processing

Download Hands-On Python Natural Language Processing PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838982582
Total Pages : 304 pages
Book Rating : 4.8/5 (389 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Python Natural Language Processing by : Aman Kedia

Download or read book Hands-On Python Natural Language Processing written by Aman Kedia and published by Packt Publishing Ltd. This book was released on 2020-06-26 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get well-versed with traditional as well as modern natural language processing concepts and techniques Key FeaturesPerform various NLP tasks to build linguistic applications using Python librariesUnderstand, analyze, and generate text to provide accurate resultsInterpret human language using various NLP concepts, methodologies, and toolsBook Description Natural Language Processing (NLP) is the subfield in computational linguistics that enables computers to understand, process, and analyze text. This book caters to the unmet demand for hands-on training of NLP concepts and provides exposure to real-world applications along with a solid theoretical grounding. This book starts by introducing you to the field of NLP and its applications, along with the modern Python libraries that you'll use to build your NLP-powered apps. With the help of practical examples, you’ll learn how to build reasonably sophisticated NLP applications, and cover various methodologies and challenges in deploying NLP applications in the real world. You'll cover key NLP tasks such as text classification, semantic embedding, sentiment analysis, machine translation, and developing a chatbot using machine learning and deep learning techniques. The book will also help you discover how machine learning techniques play a vital role in making your linguistic apps smart. Every chapter is accompanied by examples of real-world applications to help you build impressive NLP applications of your own. By the end of this NLP book, you’ll be able to work with language data, use machine learning to identify patterns in text, and get acquainted with the advancements in NLP. What you will learnUnderstand how NLP powers modern applicationsExplore key NLP techniques to build your natural language vocabularyTransform text data into mathematical data structures and learn how to improve text mining modelsDiscover how various neural network architectures work with natural language dataGet the hang of building sophisticated text processing models using machine learning and deep learningCheck out state-of-the-art architectures that have revolutionized research in the NLP domainWho this book is for This NLP Python book is for anyone looking to learn NLP’s theoretical and practical aspects alike. It starts with the basics and gradually covers advanced concepts to make it easy to follow for readers with varying levels of NLP proficiency. This comprehensive guide will help you develop a thorough understanding of the NLP methodologies for building linguistic applications; however, working knowledge of Python programming language and high school level mathematics is expected.

Learning Predictive Analytics with Python

Download Learning Predictive Analytics with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1783983272
Total Pages : 354 pages
Book Rating : 4.7/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Learning Predictive Analytics with Python by : Ashish Kumar

Download or read book Learning Predictive Analytics with Python written by Ashish Kumar and published by Packt Publishing Ltd. This book was released on 2016-02-15 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain practical insights into predictive modelling by implementing Predictive Analytics algorithms on public datasets with Python About This Book A step-by-step guide to predictive modeling including lots of tips, tricks, and best practices Get to grips with the basics of Predictive Analytics with Python Learn how to use the popular predictive modeling algorithms such as Linear Regression, Decision Trees, Logistic Regression, and Clustering Who This Book Is For If you wish to learn how to implement Predictive Analytics algorithms using Python libraries, then this is the book for you. If you are familiar with coding in Python (or some other programming/statistical/scripting language) but have never used or read about Predictive Analytics algorithms, this book will also help you. The book will be beneficial to and can be read by any Data Science enthusiasts. Some familiarity with Python will be useful to get the most out of this book, but it is certainly not a prerequisite. What You Will Learn Understand the statistical and mathematical concepts behind Predictive Analytics algorithms and implement Predictive Analytics algorithms using Python libraries Analyze the result parameters arising from the implementation of Predictive Analytics algorithms Write Python modules/functions from scratch to execute segments or the whole of these algorithms Recognize and mitigate various contingencies and issues related to the implementation of Predictive Analytics algorithms Get to know various methods of importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and numpy Create dummy datasets and simple mathematical simulations using the Python numpy and pandas libraries Understand the best practices while handling datasets in Python and creating predictive models out of them In Detail Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age. This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy. You'll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world. Style and approach All the concepts in this book been explained and illustrated using a dataset, and in a step-by-step manner. The Python code snippet to implement a method or concept is followed by the output, such as charts, dataset heads, pictures, and so on. The statistical concepts are explained in detail wherever required.

AI Blueprints

Download AI Blueprints PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788997972
Total Pages : 251 pages
Book Rating : 4.7/5 (889 download)

DOWNLOAD NOW!


Book Synopsis AI Blueprints by : Dr. Joshua Eckroth

Download or read book AI Blueprints written by Dr. Joshua Eckroth and published by Packt Publishing Ltd. This book was released on 2018-12-31 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential blueprints and workflow you need to build successful AI business applications Key FeaturesLearn and master the essential blueprints to program AI for real-world business applicationsGain insights into how modern AI and machine learning solve core business challengesAcquire practical techniques and a workflow that can build AI applications using state-of-the-art software librariesWork with a practical, code-based strategy for creating successful AI solutions in your businessBook Description AI Blueprints gives you a working framework and the techniques to build your own successful AI business applications. You’ll learn across six business scenarios how AI can solve critical challenges with state-of-the-art AI software libraries and a well thought out workflow. Along the way you’ll discover the practical techniques to build AI business applications from first design to full coding and deployment. The AI blueprints in this book solve key business scenarios. The first blueprint uses AI to find solutions for building plans for cloud computing that are on-time and under budget. The second blueprint involves an AI system that continuously monitors social media to gauge public feeling about a topic of interest - such as self-driving cars. You’ll learn how to approach AI business problems and apply blueprints that can ensure success. The next AI scenario shows you how to approach the problem of creating a recommendation engine and monitoring how those recommendations perform. The fourth blueprint shows you how to use deep learning to find your business logo in social media photos and assess how people interact with your products. Learn the practical techniques involved and how to apply these blueprints intelligently. The fifth blueprint is about how to best design a ‘trending now’ section on your website, much like the one we know from Twitter. The sixth blueprint shows how to create helpful chatbots so that an AI system can understand customers’ questions and answer them with relevant responses. This book continuously demonstrates a working framework and strategy for building AI business applications. Along the way, you’ll also learn how to prepare for future advances in AI. You’ll gain a workflow and a toolbox of patterns and techniques so that you can create your own smart code. What you will learnAn essential toolbox of blueprints and advanced techniques for building AI business applicationsHow to design and deploy AI applications that meet today’s business needsA workflow from first design stages to practical code solutions in your next AI projectsSolutions for AI projects that involve social media analytics and recommendation enginesPractical projects and techniques for sentiment analysis and helpful chatbotsA blueprint for AI projects that recommend products based on customer purchasing habitsHow to prepare yourself for the next decade of AI and machine learning advancementsWho this book is for Programming AI Business Applications provides an introduction to AI with real-world examples. This book can be read and understood by programmers and students without requiring previous AI experience. The projects in this book make use of Java and Python and several popular and state-of-the-art opensource AI libraries.

Practical Natural Language Processing

Download Practical Natural Language Processing PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 149205402X
Total Pages : 455 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Practical Natural Language Processing by : Sowmya Vajjala

Download or read book Practical Natural Language Processing written by Sowmya Vajjala and published by O'Reilly Media. This book was released on 2020-06-17 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective

Programming Google App Engine with Python

Download Programming Google App Engine with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491903686
Total Pages : 462 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Programming Google App Engine with Python by : Dan Sanderson

Download or read book Programming Google App Engine with Python written by Dan Sanderson and published by "O'Reilly Media, Inc.". This book was released on 2015-06-29 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical guide shows intermediate and advanced web and mobile app developers how to build highly scalable Python applications in the cloud with Google App Engine. The flagship of Google's Cloud Platform, App Engine hosts your app on infrastructure that grows automatically with your traffic, minimizing up-front costs and accommodating unexpected visitors. You’ll learn hands-on how to perform common development tasks with App Engine services and development tools, including deployment and maintenance. App Engine's Python support includes a fast Python 2.7 interpreter, the standard library, and a WSGI-based runtime environment. Choose from many popular web application frameworks, including Django and Flask. Get a hands-on introduction to App Engine's tools and features, using an example application Simulate App Engine on your development machine with tools from Google Cloud SDK Structure your app into individually addressable modules, each with its own scaling configuration Exploit the power of the scalable Cloud Datastore, using queries, transactions, and data modeling with the ndb library Use Cloud SQL for standard relational databases with App Engine applications Learn how to deploy, manage, and inspect your application on Google infrastructure

Web Scraping with Python

Download Web Scraping with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491910259
Total Pages : 264 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Web Scraping with Python by : Ryan Mitchell

Download or read book Web Scraping with Python written by Ryan Mitchell and published by "O'Reilly Media, Inc.". This book was released on 2015-06-15 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn web scraping and crawling techniques to access unlimited data from any web source in any format. With this practical guide, you’ll learn how to use Python scripts and web APIs to gather and process data from thousands—or even millions—of web pages at once. Ideal for programmers, security professionals, and web administrators familiar with Python, this book not only teaches basic web scraping mechanics, but also delves into more advanced topics, such as analyzing raw data or using scrapers for frontend website testing. Code samples are available to help you understand the concepts in practice. Learn how to parse complicated HTML pages Traverse multiple pages and sites Get a general overview of APIs and how they work Learn several methods for storing the data you scrape Download, read, and extract data from documents Use tools and techniques to clean badly formatted data Read and write natural languages Crawl through forms and logins Understand how to scrape JavaScript Learn image processing and text recognition

Practical Data Science with SAP

Download Practical Data Science with SAP PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492046418
Total Pages : 333 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Practical Data Science with SAP by : Greg Foss

Download or read book Practical Data Science with SAP written by Greg Foss and published by O'Reilly Media. This book was released on 2019-09-18 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to fuse today's data science tools and techniques with your SAP enterprise resource planning (ERP) system. With this practical guide, SAP veterans Greg Foss and Paul Modderman demonstrate how to use several data analysis tools to solve interesting problems with your SAP data. Data engineers and scientists will explore ways to add SAP data to their analysis processes, while SAP business analysts will learn practical methods for answering questions about the business. By focusing on grounded explanations of both SAP processes and data science tools, this book gives data scientists and business analysts powerful methods for discovering deep data truths. You'll explore: Examples of how data analysis can help you solve several SAP challenges Natural language processing for unlocking the secrets in text Data science techniques for data clustering and segmentation Methods for detecting anomalies in your SAP data Data visualization techniques for making your data come to life

Data Science and Machine Learning

Download Data Science and Machine Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000730778
Total Pages : 538 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Machine Learning by : Dirk P. Kroese

Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code