Big Data Preprocessing

Download Big Data Preprocessing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030391051
Total Pages : 193 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Big Data Preprocessing by : Julián Luengo

Download or read book Big Data Preprocessing written by Julián Luengo and published by Springer Nature. This book was released on 2020-03-16 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensible overview of Big Data Preprocessing, which includes a formal description of each problem. It also focuses on the most relevant proposed solutions. This book illustrates actual implementations of algorithms that helps the reader deal with these problems. This book stresses the gap that exists between big, raw data and the requirements of quality data that businesses are demanding. This is called Smart Data, and to achieve Smart Data the preprocessing is a key step, where the imperfections, integration tasks and other processes are carried out to eliminate superfluous information. The authors present the concept of Smart Data through data preprocessing in Big Data scenarios and connect it with the emerging paradigms of IoT and edge computing, where the end points generate Smart Data without completely relying on the cloud. Finally, this book provides some novel areas of study that are gathering a deeper attention on the Big Data preprocessing. Specifically, it considers the relation with Deep Learning (as of a technique that also relies in large volumes of data), the difficulty of finding the appropriate selection and concatenation of preprocessing techniques applied and some other open problems. Practitioners and data scientists who work in this field, and want to introduce themselves to preprocessing in large data volume scenarios will want to purchase this book. Researchers that work in this field, who want to know which algorithms are currently implemented to help their investigations, may also be interested in this book.

Data Preprocessing in Data Mining

Download Data Preprocessing in Data Mining PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319102478
Total Pages : 327 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Data Preprocessing in Data Mining by : Salvador García

Download or read book Data Preprocessing in Data Mining written by Salvador García and published by Springer. This book was released on 2014-08-30 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data. This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.

Hands-On Data Preprocessing in Python

Download Hands-On Data Preprocessing in Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801079951
Total Pages : 602 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Data Preprocessing in Python by : Roy Jafari

Download or read book Hands-On Data Preprocessing in Python written by Roy Jafari and published by Packt Publishing Ltd. This book was released on 2022-01-21 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get your raw data cleaned up and ready for processing to design better data analytic solutions Key FeaturesDevelop the skills to perform data cleaning, data integration, data reduction, and data transformationMake the most of your raw data with powerful data transformation and massaging techniquesPerform thorough data cleaning, including dealing with missing values and outliersBook Description Hands-On Data Preprocessing is a primer on the best data cleaning and preprocessing techniques, written by an expert who's developed college-level courses on data preprocessing and related subjects. With this book, you'll be equipped with the optimum data preprocessing techniques from multiple perspectives, ensuring that you get the best possible insights from your data. You'll learn about different technical and analytical aspects of data preprocessing – data collection, data cleaning, data integration, data reduction, and data transformation – and get to grips with implementing them using the open source Python programming environment. The hands-on examples and easy-to-follow chapters will help you gain a comprehensive articulation of data preprocessing, its whys and hows, and identify opportunities where data analytics could lead to more effective decision making. As you progress through the chapters, you'll also understand the role of data management systems and technologies for effective analytics and how to use APIs to pull data. By the end of this Python data preprocessing book, you'll be able to use Python to read, manipulate, and analyze data; perform data cleaning, integration, reduction, and transformation techniques, and handle outliers or missing values to effectively prepare data for analytic tools. What you will learnUse Python to perform analytics functions on your dataUnderstand the role of databases and how to effectively pull data from databasesPerform data preprocessing steps defined by your analytics goalsRecognize and resolve data integration challengesIdentify the need for data reduction and execute itDetect opportunities to improve analytics with data transformationWho this book is for This book is for junior and senior data analysts, business intelligence professionals, engineering undergraduates, and data enthusiasts looking to perform preprocessing and data cleaning on large amounts of data. You don't need any prior experience with data preprocessing to get started with this book. However, basic programming skills, such as working with variables, conditionals, and loops, along with beginner-level knowledge of Python and simple analytics experience, are a prerequisite.

Machine Learning and Big Data

Download Machine Learning and Big Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119654742
Total Pages : 544 pages
Book Rating : 4.1/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Big Data by : Uma N. Dulhare

Download or read book Machine Learning and Big Data written by Uma N. Dulhare and published by John Wiley & Sons. This book was released on 2020-09-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including those that are solving technology requirements, evaluation of methodology advances and algorithm demonstrations. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the academic and professional community. The 17 chapters are divided into 5 sections: Theoretical Fundamentals; Big Data and Pattern Recognition; Machine Learning: Algorithms & Applications; Machine Learning's Next Frontier and Hands-On and Case Study. While it dwells on the foundations of machine learning and big data as a part of analytics, it also focuses on contemporary topics for research and development. In this regard, the book covers machine learning algorithms and their modern applications in developing automated systems. Subjects covered in detail include: Mathematical foundations of machine learning with various examples. An empirical study of supervised learning algorithms like Naïve Bayes, KNN and semi-supervised learning algorithms viz. S3VM, Graph-Based, Multiview. Precise study on unsupervised learning algorithms like GMM, K-mean clustering, Dritchlet process mixture model, X-means and Reinforcement learning algorithm with Q learning, R learning, TD learning, SARSA Learning, and so forth. Hands-on machine leaning open source tools viz. Apache Mahout, H2O. Case studies for readers to analyze the prescribed cases and present their solutions or interpretations with intrusion detection in MANETS using machine learning. Showcase on novel user-cases: Implications of Electronic Governance as well as Pragmatic Study of BD/ML technologies for agriculture, healthcare, social media, industry, banking, insurance and so on.

Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance

Download Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1799873730
Total Pages : 309 pages
Book Rating : 4.7/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance by : Rana, Dipti P.

Download or read book Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance written by Rana, Dipti P. and published by IGI Global. This book was released on 2021-06-04 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last two decades, researchers are looking at imbalanced data learning as a prominent research area. Many critical real-world application areas like finance, health, network, news, online advertisement, social network media, and weather have imbalanced data, which emphasizes the research necessity for real-time implications of precise fraud/defaulter detection, rare disease/reaction prediction, network intrusion detection, fake news detection, fraud advertisement detection, cyber bullying identification, disaster events prediction, and more. Machine learning algorithms are based on the heuristic of equally-distributed balanced data and provide the biased result towards the majority data class, which is not acceptable considering imbalanced data is omnipresent in real-life scenarios and is forcing us to learn from imbalanced data for foolproof application design. Imbalanced data is multifaceted and demands a new perception using the novelty at sampling approach of data preprocessing, an active learning approach, and a cost perceptive approach to resolve data imbalance. Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance offers new aspects for imbalanced data learning by providing the advancements of the traditional methods, with respect to big data, through case studies and research from experts in academia, engineering, and industry. The chapters provide theoretical frameworks and the latest empirical research findings that help to improve the understanding of the impact of imbalanced data and its resolving techniques based on data preprocessing, active learning, and cost perceptive approaches. This book is ideal for data scientists, data analysts, engineers, practitioners, researchers, academicians, and students looking for more information on imbalanced data characteristics and solutions using varied approaches.

Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges

Download Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303059338X
Total Pages : 648 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges by : Aboul Ella Hassanien

Download or read book Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges written by Aboul Ella Hassanien and published by Springer Nature. This book was released on 2020-12-14 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes including artificial intelligence and data mining applications, machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications.

Practical Machine Learning for Data Analysis Using Python

Download Practical Machine Learning for Data Analysis Using Python PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128213809
Total Pages : 536 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Practical Machine Learning for Data Analysis Using Python by : Abdulhamit Subasi

Download or read book Practical Machine Learning for Data Analysis Using Python written by Abdulhamit Subasi and published by Academic Press. This book was released on 2020-06-05 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features

Building Machine Learning Pipelines

Download Building Machine Learning Pipelines PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492053147
Total Pages : 398 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Building Machine Learning Pipelines by : Hannes Hapke

Download or read book Building Machine Learning Pipelines written by Hannes Hapke and published by "O'Reilly Media, Inc.". This book was released on 2020-07-13 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques

The Elements of Big Data Value

Download The Elements of Big Data Value PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030681769
Total Pages : 399 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis The Elements of Big Data Value by : Edward Curry

Download or read book The Elements of Big Data Value written by Edward Curry and published by Springer Nature. This book was released on 2021-08-01 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation.

Building a Recommendation System with R

Download Building a Recommendation System with R PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1783554509
Total Pages : 158 pages
Book Rating : 4.7/5 (835 download)

DOWNLOAD NOW!


Book Synopsis Building a Recommendation System with R by : Suresh K. Gorakala

Download or read book Building a Recommendation System with R written by Suresh K. Gorakala and published by Packt Publishing Ltd. This book was released on 2015-09-29 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the art of building robust and powerful recommendation engines using R About This Book Learn to exploit various data mining techniques Understand some of the most popular recommendation techniques This is a step-by-step guide full of real-world examples to help you build and optimize recommendation engines Who This Book Is For If you are a competent developer with some knowledge of machine learning and R, and want to further enhance your skills to build recommendation systems, then this book is for you. What You Will Learn Get to grips with the most important branches of recommendation Understand various data processing and data mining techniques Evaluate and optimize the recommendation algorithms Prepare and structure the data before building models Discover different recommender systems along with their implementation in R Explore various evaluation techniques used in recommender systems Get to know about recommenderlab, an R package, and understand how to optimize it to build efficient recommendation systems In Detail A recommendation system performs extensive data analysis in order to generate suggestions to its users about what might interest them. R has recently become one of the most popular programming languages for the data analysis. Its structure allows you to interactively explore the data and its modules contain the most cutting-edge techniques thanks to its wide international community. This distinctive feature of the R language makes it a preferred choice for developers who are looking to build recommendation systems. The book will help you understand how to build recommender systems using R. It starts off by explaining the basics of data mining and machine learning. Next, you will be familiarized with how to build and optimize recommender models using R. Following that, you will be given an overview of the most popular recommendation techniques. Finally, you will learn to implement all the concepts you have learned throughout the book to build a recommender system. Style and approach This is a step-by-step guide that will take you through a series of core tasks. Every task is explained in detail with the help of practical examples.

Data-Intensive Text Processing with MapReduce

Download Data-Intensive Text Processing with MapReduce PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031021363
Total Pages : 171 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Data-Intensive Text Processing with MapReduce by : Jimmy Lin

Download or read book Data-Intensive Text Processing with MapReduce written by Jimmy Lin and published by Springer Nature. This book was released on 2022-05-31 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our world is being revolutionized by data-driven methods: access to large amounts of data has generated new insights and opened exciting new opportunities in commerce, science, and computing applications. Processing the enormous quantities of data necessary for these advances requires large clusters, making distributed computing paradigms more crucial than ever. MapReduce is a programming model for expressing distributed computations on massive datasets and an execution framework for large-scale data processing on clusters of commodity servers. The programming model provides an easy-to-understand abstraction for designing scalable algorithms, while the execution framework transparently handles many system-level details, ranging from scheduling to synchronization to fault tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing algorithms common in natural language processing, information retrieval, and machine learning. We introduce the notion of MapReduce design patterns, which represent general reusable solutions to commonly occurring problems across a variety of problem domains. This book not only intends to help the reader "think in MapReduce", but also discusses limitations of the programming model as well. Table of Contents: Introduction / MapReduce Basics / MapReduce Algorithm Design / Inverted Indexing for Text Retrieval / Graph Algorithms / EM Algorithms for Text Processing / Closing Remarks

Feature Engineering for Machine Learning and Data Analytics

Download Feature Engineering for Machine Learning and Data Analytics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351721275
Total Pages : 400 pages
Book Rating : 4.3/5 (517 download)

DOWNLOAD NOW!


Book Synopsis Feature Engineering for Machine Learning and Data Analytics by : Guozhu Dong

Download or read book Feature Engineering for Machine Learning and Data Analytics written by Guozhu Dong and published by CRC Press. This book was released on 2018-03-14 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.

Analytics in a Big Data World

Download Analytics in a Big Data World PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118892747
Total Pages : 262 pages
Book Rating : 4.1/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Analytics in a Big Data World by : Bart Baesens

Download or read book Analytics in a Big Data World written by Bart Baesens and published by John Wiley & Sons. This book was released on 2014-04-15 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The guide to targeting and leveraging business opportunities using big data & analytics By leveraging big data & analytics, businesses create the potential to better understand, manage, and strategically exploiting the complex dynamics of customer behavior. Analytics in a Big Data World reveals how to tap into the powerful tool of data analytics to create a strategic advantage and identify new business opportunities. Designed to be an accessible resource, this essential book does not include exhaustive coverage of all analytical techniques, instead focusing on analytics techniques that really provide added value in business environments. The book draws on author Bart Baesens' expertise on the topics of big data, analytics and its applications in e.g. credit risk, marketing, and fraud to provide a clear roadmap for organizations that want to use data analytics to their advantage, but need a good starting point. Baesens has conducted extensive research on big data, analytics, customer relationship management, web analytics, fraud detection, and credit risk management, and uses this experience to bring clarity to a complex topic. Includes numerous case studies on risk management, fraud detection, customer relationship management, and web analytics Offers the results of research and the author's personal experience in banking, retail, and government Contains an overview of the visionary ideas and current developments on the strategic use of analytics for business Covers the topic of data analytics in easy-to-understand terms without an undo emphasis on mathematics and the minutiae of statistical analysis For organizations looking to enhance their capabilities via data analytics, this resource is the go-to reference for leveraging data to enhance business capabilities.

Data Mining: Know It All

Download Data Mining: Know It All PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 0080877885
Total Pages : 477 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Data Mining: Know It All by : Soumen Chakrabarti

Download or read book Data Mining: Know It All written by Soumen Chakrabarti and published by Morgan Kaufmann. This book was released on 2008-10-31 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings all of the elements of data mining together in a single volume, saving the reader the time and expense of making multiple purchases. It consolidates both introductory and advanced topics, thereby covering the gamut of data mining and machine learning tactics ? from data integration and pre-processing, to fundamental algorithms, to optimization techniques and web mining methodology. The proposed book expertly combines the finest data mining material from the Morgan Kaufmann portfolio. Individual chapters are derived from a select group of MK books authored by the best and brightest in the field. These chapters are combined into one comprehensive volume in a way that allows it to be used as a reference work for those interested in new and developing aspects of data mining. This book represents a quick and efficient way to unite valuable content from leading data mining experts, thereby creating a definitive, one-stop-shopping opportunity for customers to receive the information they would otherwise need to round up from separate sources. - Chapters contributed by various recognized experts in the field let the reader remain up to date and fully informed from multiple viewpoints. - Presents multiple methods of analysis and algorithmic problem-solving techniques, enhancing the reader's technical expertise and ability to implement practical solutions. - Coverage of both theory and practice brings all of the elements of data mining together in a single volume, saving the reader the time and expense of making multiple purchases.

Big Data

Download Big Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119701872
Total Pages : 368 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Big Data by : Balamurugan Balusamy

Download or read book Big Data written by Balamurugan Balusamy and published by John Wiley & Sons. This book was released on 2021-03-15 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn Big Data from the ground up with this complete and up-to-date resource from leaders in the field Big Data: Concepts, Technology, and Architecture delivers a comprehensive treatment of Big Data tools, terminology, and technology perfectly suited to a wide range of business professionals, academic researchers, and students. Beginning with a fulsome overview of what we mean when we say, “Big Data,” the book moves on to discuss every stage of the lifecycle of Big Data. You’ll learn about the creation of structured, unstructured, and semi-structured data, data storage solutions, traditional database solutions like SQL, data processing, data analytics, machine learning, and data mining. You’ll also discover how specific technologies like Apache Hadoop, SQOOP, and Flume work. Big Data also covers the central topic of big data visualization with Tableau, and you’ll learn how to create scatter plots, histograms, bar, line, and pie charts with that software. Accessibly organized, Big Data includes illuminating case studies throughout the material, showing you how the included concepts have been applied in real-world settings. Some of those concepts include: The common challenges facing big data technology and technologists, like data heterogeneity and incompleteness, data volume and velocity, storage limitations, and privacy concerns Relational and non-relational databases, like RDBMS, NoSQL, and NewSQL databases Virtualizing Big Data through encapsulation, partitioning, and isolating, as well as big data server virtualization Apache software, including Hadoop, Cassandra, Avro, Pig, Mahout, Oozie, and Hive The Big Data analytics lifecycle, including business case evaluation, data preparation, extraction, transformation, analysis, and visualization Perfect for data scientists, data engineers, and database managers, Big Data also belongs on the bookshelves of business intelligence analysts who are required to make decisions based on large volumes of information. Executives and managers who lead teams responsible for keeping or understanding large datasets will also benefit from this book.

Artificial Intelligence for Big Data

Download Artificial Intelligence for Big Data PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788476018
Total Pages : 371 pages
Book Rating : 4.7/5 (884 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence for Big Data by : Anand Deshpande

Download or read book Artificial Intelligence for Big Data written by Anand Deshpande and published by Packt Publishing Ltd. This book was released on 2018-05-22 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build next-generation Artificial Intelligence systems with Java Key Features Implement AI techniques to build smart applications using Deeplearning4j Perform big data analytics to derive quality insights using Spark MLlib Create self-learning systems using neural networks, NLP, and reinforcement learning Book Description In this age of big data, companies have larger amount of consumer data than ever before, far more than what the current technologies can ever hope to keep up with. However, Artificial Intelligence closes the gap by moving past human limitations in order to analyze data. With the help of Artificial Intelligence for big data, you will learn to use Machine Learning algorithms such as k-means, SVM, RBF, and regression to perform advanced data analysis. You will understand the current status of Machine and Deep Learning techniques to work on Genetic and Neuro-Fuzzy algorithms. In addition, you will explore how to develop Artificial Intelligence algorithms to learn from data, why they are necessary, and how they can help solve real-world problems. By the end of this book, you'll have learned how to implement various Artificial Intelligence algorithms for your big data systems and integrate them into your product offerings such as reinforcement learning, natural language processing, image recognition, genetic algorithms, and fuzzy logic systems. What you will learn Manage Artificial Intelligence techniques for big data with Java Build smart systems to analyze data for enhanced customer experience Learn to use Artificial Intelligence frameworks for big data Understand complex problems with algorithms and Neuro-Fuzzy systems Design stratagems to leverage data using Machine Learning process Apply Deep Learning techniques to prepare data for modeling Construct models that learn from data using open source tools Analyze big data problems using scalable Machine Learning algorithms Who this book is for This book is for you if you are a data scientist, big data professional, or novice who has basic knowledge of big data and wish to get proficiency in Artificial Intelligence techniques for big data. Some competence in mathematics is an added advantage in the field of elementary linear algebra and calculus.

Principles of Data Science

Download Principles of Data Science PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303043981X
Total Pages : 276 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Principles of Data Science by : Hamid R. Arabnia

Download or read book Principles of Data Science written by Hamid R. Arabnia and published by Springer Nature. This book was released on 2020-07-08 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a thorough understanding of various research areas within the field of data science. The book introduces readers to various techniques for data acquisition, extraction, and cleaning, data summarizing and modeling, data analysis and communication techniques, data science tools, deep learning, and various data science applications. Researchers can extract and conclude various future ideas and topics that could result in potential publications or thesis. Furthermore, this book contributes to Data Scientists’ preparation and to enhancing their knowledge of the field. The book provides a rich collection of manuscripts in highly regarded data science topics, edited by professors with long experience in the field of data science. Introduces various techniques, methods, and algorithms adopted by Data Science experts Provides a detailed explanation of data science perceptions, reinforced by practical examples Presents a road map of future trends suitable for innovative data science research and practice