Bayesian Analysis for Population Ecology

Download Bayesian Analysis for Population Ecology PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439811881
Total Pages : 457 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Analysis for Population Ecology by : Ruth King

Download or read book Bayesian Analysis for Population Ecology written by Ruth King and published by CRC Press. This book was released on 2009-10-30 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing model choice and model averaging, this book presents up-to-date Bayesian methods for analyzing complex ecological data. It provides a basic introduction to Bayesian methods that assumes no prior knowledge. The book includes detailed descriptions of methods that deal with covariate data and covers techniques at the forefront of research, such as model discrimination and model averaging. Leaders in the statistical ecology field, the authors apply the theory to a wide range of actual case studies and illustrate the methods using WinBUGS and R. The computer programs and full details of the data sets are available on the book's website.

Bayesian Methods for Ecology

Download Bayesian Methods for Ecology PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 113946387X
Total Pages : 310 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Methods for Ecology by : Michael A. McCarthy

Download or read book Bayesian Methods for Ecology written by Michael A. McCarthy and published by Cambridge University Press. This book was released on 2007-05-10 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interest in using Bayesian methods in ecology is increasing, however many ecologists have difficulty with conducting the required analyses. McCarthy bridges that gap, using a clear and accessible style. The text also incorporates case studies to demonstrate mark-recapture analysis, development of population models and the use of subjective judgement. The advantages of Bayesian methods, are also described here, for example, the incorporation of any relevant prior information and the ability to assess the evidence in favour of competing hypotheses. Free software is available as well as an accompanying web-site containing the data files and WinBUGS codes. Bayesian Methods for Ecology will appeal to academic researchers, upper undergraduate and graduate students of Ecology.

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan

Download Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128016787
Total Pages : 329 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan by : Franzi Korner-Nievergelt

Download or read book Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan written by Franzi Korner-Nievergelt and published by Academic Press. This book was released on 2015-04-04 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions—including all R codes—that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. - Introduces Bayesian data analysis, allowing users to obtain uncertainty measurements easily for any derived parameter of interest - Written in a step-by-step approach that allows for eased understanding by non-statisticians - Includes a companion website containing R-code to help users conduct Bayesian data analyses on their own data - All example data as well as additional functions are provided in the R-package blmeco

Bayesian Models

Download Bayesian Models PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400866553
Total Pages : 315 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Models by : N. Thompson Hobbs

Download or read book Bayesian Models written by N. Thompson Hobbs and published by Princeton University Press. This book was released on 2015-08-04 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals. This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management. Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticians Covers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and more Deemphasizes computer coding in favor of basic principles Explains how to write out properly factored statistical expressions representing Bayesian models

Bayesian Inference

Download Bayesian Inference PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080889808
Total Pages : 355 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Inference by : William A Link

Download or read book Bayesian Inference written by William A Link and published by Academic Press. This book was released on 2009-08-07 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is written to provide a mathematically sound but accessible and engaging introduction to Bayesian inference specifically for environmental scientists, ecologists and wildlife biologists. It emphasizes the power and usefulness of Bayesian methods in an ecological context. The advent of fast personal computers and easily available software has simplified the use of Bayesian and hierarchical models . One obstacle remains for ecologists and wildlife biologists, namely the near absence of Bayesian texts written specifically for them. The book includes many relevant examples, is supported by software and examples on a companion website and will become an essential grounding in this approach for students and research ecologists. Engagingly written text specifically designed to demystify a complex subject Examples drawn from ecology and wildlife research An essential grounding for graduate and research ecologists in the increasingly prevalent Bayesian approach to inference Companion website with analytical software and examples Leading authors with world-class reputations in ecology and biostatistics

Introduction to WinBUGS for Ecologists

Download Introduction to WinBUGS for Ecologists PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0123786061
Total Pages : 321 pages
Book Rating : 4.1/5 (237 download)

DOWNLOAD NOW!


Book Synopsis Introduction to WinBUGS for Ecologists by : Marc Kéry

Download or read book Introduction to WinBUGS for Ecologists written by Marc Kéry and published by Academic Press. This book was released on 2010-07-19 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to WinBUGS for Ecologists introduces applied Bayesian modeling to ecologists using the highly acclaimed, free WinBUGS software. It offers an understanding of statistical models as abstract representations of the various processes that give rise to a data set. Such an understanding is basic to the development of inference models tailored to specific sampling and ecological scenarios. The book begins by presenting the advantages of a Bayesian approach to statistics and introducing the WinBUGS software. It reviews the four most common statistical distributions: the normal, the uniform, the binomial, and the Poisson. It describes the two different kinds of analysis of variance (ANOVA): one-way and two- or multiway. It looks at the general linear model, or ANCOVA, in R and WinBUGS. It introduces generalized linear model (GLM), i.e., the extension of the normal linear model to allow error distributions other than the normal. The GLM is then extended contain additional sources of random variation to become a generalized linear mixed model (GLMM) for a Poisson example and for a binomial example. The final two chapters showcase two fairly novel and nonstandard versions of a GLMM. The first is the site-occupancy model for species distributions; the second is the binomial (or N-) mixture model for estimation and modeling of abundance. - Introduction to the essential theories of key models used by ecologists - Complete juxtaposition of classical analyses in R and Bayesian analysis of the same models in WinBUGS - Provides every detail of R and WinBUGS code required to conduct all analyses - Companion Web Appendix that contains all code contained in the book and additional material (including more code and solutions to exercises)

Hierarchical Modeling and Inference in Ecology

Download Hierarchical Modeling and Inference in Ecology PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080559255
Total Pages : 463 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Hierarchical Modeling and Inference in Ecology by : J. Andrew Royle

Download or read book Hierarchical Modeling and Inference in Ecology written by J. Andrew Royle and published by Elsevier. This book was released on 2008-10-15 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods.This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures.The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution* abundance models based on many sampling protocols, including distance sampling* capture-recapture models with individual effects* spatial capture-recapture models based on camera trapping and related methods* population and metapopulation dynamic models* models of biodiversity, community structure and dynamics - Wide variety of examples involving many taxa (birds, amphibians, mammals, insects, plants) - Development of classical, likelihood-based procedures for inference, as well as Bayesian methods of analysis - Detailed explanations describing the implementation of hierarchical models using freely available software such as R and WinBUGS - Computing support in technical appendices in an online companion web site

Likelihood Methods in Biology and Ecology

Download Likelihood Methods in Biology and Ecology PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429533233
Total Pages : 274 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Likelihood Methods in Biology and Ecology by : Michael Brimacombe

Download or read book Likelihood Methods in Biology and Ecology written by Michael Brimacombe and published by CRC Press. This book was released on 2018-12-18 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes the importance of the likelihood function in statistical theory and applications and discusses it in the context of biology and ecology. Bayesian and frequentist methods both use the likelihood function and provide differing but related insights. This is examined here both through review of basic methodology and also the integr

Ecological Models and Data in R

Download Ecological Models and Data in R PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691125228
Total Pages : 408 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Ecological Models and Data in R by : Benjamin M. Bolker

Download or read book Ecological Models and Data in R written by Benjamin M. Bolker and published by Princeton University Press. This book was released on 2008-07-21 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction and background; Exploratory data analysis and graphics; Deterministic functions for ecological modeling; Probability and stochastic distributions for ecological modeling; Stochatsic simulation and power analysis; Likelihood and all that; Optimization and all that; Likelihood examples; Standar statistics revisited; Modeling variance; Dynamic models.

Introduction to Hierarchical Bayesian Modeling for Ecological Data

Download Introduction to Hierarchical Bayesian Modeling for Ecological Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1584889195
Total Pages : 429 pages
Book Rating : 4.5/5 (848 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Hierarchical Bayesian Modeling for Ecological Data by : Eric Parent

Download or read book Introduction to Hierarchical Bayesian Modeling for Ecological Data written by Eric Parent and published by CRC Press. This book was released on 2012-08-21 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts and techniques of the Bayesian paradigm from a practical point of view using real case studies. They emphasize how hierarchical Bayesian modeling supports multidimensional models involving complex interactions between parameters and latent variables. Data sets, exercises, and R and WinBUGS codes are available on the authors’ website. This book shows how Bayesian statistical modeling provides an intuitive way to organize data, test ideas, investigate competing hypotheses, and assess degrees of confidence of predictions. It also illustrates how conditional reasoning can dismantle a complex reality into more understandable pieces. As conditional reasoning is intimately linked with Bayesian thinking, considering hierarchical models within the Bayesian setting offers a unified and coherent framework for modeling, estimation, and prediction.

Models for Ecological Data

Download Models for Ecological Data PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691220123
Total Pages : 634 pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Models for Ecological Data by : James S. Clark

Download or read book Models for Ecological Data written by James S. Clark and published by Princeton University Press. This book was released on 2020-10-06 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: The environmental sciences are undergoing a revolution in the use of models and data. Facing ecological data sets of unprecedented size and complexity, environmental scientists are struggling to understand and exploit powerful new statistical tools for making sense of ecological processes. In Models for Ecological Data, James Clark introduces ecologists to these modern methods in modeling and computation. Assuming only basic courses in calculus and statistics, the text introduces readers to basic maximum likelihood and then works up to more advanced topics in Bayesian modeling and computation. Clark covers both classical statistical approaches and powerful new computational tools and describes how complexity can motivate a shift from classical to Bayesian methods. Through an available lab manual, the book introduces readers to the practical work of data modeling and computation in the language R. Based on a successful course at Duke University and National Science Foundation-funded institutes on hierarchical modeling, Models for Ecological Data will enable ecologists and other environmental scientists to develop useful models that make sense of ecological data. Consistent treatment from classical to modern Bayes Underlying distribution theory to algorithm development Many examples and applications Does not assume statistical background Extensive supporting appendixes Lab manual in R is available separately

Integrated Population Models

Download Integrated Population Models PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128209151
Total Pages : 640 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Integrated Population Models by : Michael Schaub

Download or read book Integrated Population Models written by Michael Schaub and published by Academic Press. This book was released on 2021-11-12 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated Population Models: Theory and Ecological Applications with R and JAGS is the first book on integrated population models, which constitute a powerful framework for combining multiple data sets from the population and the individual levels to estimate demographic parameters, and population size and trends. These models identify drivers of population dynamics and forecast the composition and trajectory of a population. Written by two population ecologists with expertise on integrated population modeling, this book provides a comprehensive synthesis of the relevant theory of integrated population models with an extensive overview of practical applications, using Bayesian methods by means of case studies. The book contains fully-documented, complete code for fitting all models in the free software, R and JAGS. It also includes all required code for pre- and post-model-fitting analysis. Integrated Population Models is an invaluable reference for researchers and practitioners involved in population analysis, and for graduate-level students in ecology, conservation biology, wildlife management, and related fields. The text is ideal for self-study and advanced graduate-level courses. - Offers practical and accessible ecological applications of IPMs (integrated population models) - Provides full documentation of analyzed code in the Bayesian framework - Written and structured for an easy approach to the subject, especially for non-statisticians

Bayesian Statistics for the Social Sciences

Download Bayesian Statistics for the Social Sciences PDF Online Free

Author :
Publisher : Guilford Publications
ISBN 13 : 1462516513
Total Pages : 337 pages
Book Rating : 4.4/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Statistics for the Social Sciences by : David Kaplan

Download or read book Bayesian Statistics for the Social Sciences written by David Kaplan and published by Guilford Publications. This book was released on 2014-07-23 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridging the gap between traditional classical statistics and a Bayesian approach, David Kaplan provides readers with the concepts and practical skills they need to apply Bayesian methodologies to their data analysis problems. Part I addresses the elements of Bayesian inference, including exchangeability, likelihood, prior/posterior distributions, and the Bayesian central limit theorem. Part II covers Bayesian hypothesis testing, model building, and linear regression analysis, carefully explaining the differences between the Bayesian and frequentist approaches. Part III extends Bayesian statistics to multilevel modeling and modeling for continuous and categorical latent variables. Kaplan closes with a discussion of philosophical issues and argues for an "evidence-based" framework for the practice of Bayesian statistics. User-Friendly Features *Includes worked-through, substantive examples, using large-scale educational and social science databases, such as PISA (Program for International Student Assessment) and the LSAY (Longitudinal Study of American Youth). *Utilizes open-source R software programs available on CRAN (such as MCMCpack and rjags); readers do not have to master the R language and can easily adapt the example programs to fit individual needs. *Shows readers how to carefully warrant priors on the basis of empirical data. *Companion website features data and code for the book's examples, plus other resources.

Bayesian Phylogenetics

Download Bayesian Phylogenetics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466500794
Total Pages : 398 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Phylogenetics by : Ming-Hui Chen

Download or read book Bayesian Phylogenetics written by Ming-Hui Chen and published by CRC Press. This book was released on 2014-05-27 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering a rich diversity of models, Bayesian phylogenetics allows evolutionary biologists, systematists, ecologists, and epidemiologists to obtain answers to very detailed phylogenetic questions. Suitable for graduate-level researchers in statistics and biology, Bayesian Phylogenetics: Methods, Algorithms, and Applications presents a snapshot of current trends in Bayesian phylogenetic research. Encouraging interdisciplinary research, this book introduces state-of-the-art phylogenetics to the Bayesian statistical community and, likewise, presents state-of-the-art Bayesian statistics to the phylogenetics community. The book emphasizes model selection, reflecting recent interest in accurately estimating marginal likelihoods. It also discusses new approaches to improve mixing in Bayesian phylogenetic analyses in which the tree topology varies. In addition, the book covers divergence time estimation, biologically realistic models, and the burgeoning interface between phylogenetics and population genetics.

Bayesian Data Analysis for Animal Scientists

Download Bayesian Data Analysis for Animal Scientists PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319542745
Total Pages : 289 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis for Animal Scientists by : Agustín Blasco

Download or read book Bayesian Data Analysis for Animal Scientists written by Agustín Blasco and published by Springer. This book was released on 2017-08-30 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, we provide an easy introduction to Bayesian inference using MCMC techniques, making most topics intuitively reasonable and deriving to appendixes the more complicated matters. The biologist or the agricultural researcher does not normally have a background in Bayesian statistics, having difficulties in following the technical books introducing Bayesian techniques. The difficulties arise from the way of making inferences, which is completely different in the Bayesian school, and from the difficulties in understanding complicated matters such as the MCMC numerical methods. We compare both schools, classic and Bayesian, underlying the advantages of Bayesian solutions, and proposing inferences based in relevant differences, guaranteed values, probabilities of similitude or the use of ratios. We also give a scope of complex problems that can be solved using Bayesian statistics, and we end the book explaining the difficulties associated to model choice and the use of small samples. The book has a practical orientation and uses simple models to introduce the reader in this increasingly popular school of inference.

Bringing Bayesian Models to Life

Download Bringing Bayesian Models to Life PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429516800
Total Pages : 430 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Bringing Bayesian Models to Life by : Mevin B. Hooten

Download or read book Bringing Bayesian Models to Life written by Mevin B. Hooten and published by CRC Press. This book was released on 2019-05-15 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing Bayesian Models to Life empowers the reader to extend, enhance, and implement statistical models for ecological and environmental data analysis. We open the black box and show the reader how to connect modern statistical models to computer algorithms. These algorithms allow the user to fit models that answer their scientific questions without needing to rely on automated Bayesian software. We show how to handcraft statistical models that are useful in ecological and environmental science including: linear and generalized linear models, spatial and time series models, occupancy and capture-recapture models, animal movement models, spatio-temporal models, and integrated population-models. Features: R code implementing algorithms to fit Bayesian models using real and simulated data examples. A comprehensive review of statistical models commonly used in ecological and environmental science. Overview of Bayesian computational methods such as importance sampling, MCMC, and HMC. Derivations of the necessary components to construct statistical algorithms from scratch. Bringing Bayesian Models to Life contains a comprehensive treatment of models and associated algorithms for fitting the models to data. We provide detailed and annotated R code in each chapter and apply it to fit each model we present to either real or simulated data for instructional purposes. Our code shows how to create every result and figure in the book so that readers can use and modify it for their own analyses. We provide all code and data in an organized set of directories available at the authors' websites.

Bayesian Modeling Using WinBUGS

Download Bayesian Modeling Using WinBUGS PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118210352
Total Pages : 477 pages
Book Rating : 4.1/5 (182 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Modeling Using WinBUGS by : Ioannis Ntzoufras

Download or read book Bayesian Modeling Using WinBUGS written by Ioannis Ntzoufras and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all data sets and code are available on the book's related Web site. Requiring only a working knowledge of probability theory and statistics, Bayesian Modeling Using WinBUGS serves as an excellent book for courses on Bayesian statistics at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, actuarial science, medicine, and the social sciences who use WinBUGS in their everyday work.