Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Bayesian Analysis Of Dsge Models
Download Bayesian Analysis Of Dsge Models full books in PDF, epub, and Kindle. Read online Bayesian Analysis Of Dsge Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Bayesian Estimation of DSGE Models by : Edward P. Herbst
Download or read book Bayesian Estimation of DSGE Models written by Edward P. Herbst and published by Princeton University Press. This book was released on 2015-12-29 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations. Bayesian Estimation of DSGE Models is essential reading for graduate students, academic researchers, and practitioners at policy institutions.
Book Synopsis DSGE Models in Macroeconomics by : Nathan Balke
Download or read book DSGE Models in Macroeconomics written by Nathan Balke and published by Emerald Group Publishing. This book was released on 2012-11-29 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of Advances in Econometrics contains articles that examine key topics in the modeling and estimation of dynamic stochastic general equilibrium (DSGE) models. Because DSGE models combine micro- and macroeconomic theory with formal econometric modeling and inference, over the past decade they have become an established framework for analy
Book Synopsis The Oxford Handbook of Bayesian Econometrics by : John Geweke
Download or read book The Oxford Handbook of Bayesian Econometrics written by John Geweke and published by Oxford University Press. This book was released on 2011-09-29 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.
Book Synopsis Structural Macroeconometrics by : David N. DeJong
Download or read book Structural Macroeconometrics written by David N. DeJong and published by Princeton University Press. This book was released on 2011-10-03 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The revised edition of the essential resource on macroeconometrics Structural Macroeconometrics provides a thorough overview and in-depth exploration of methodologies, models, and techniques used to analyze forces shaping national economies. In this thoroughly revised second edition, David DeJong and Chetan Dave emphasize time series econometrics and unite theoretical and empirical research, while taking into account important new advances in the field. The authors detail strategies for solving dynamic structural models and present the full range of methods for characterizing and evaluating empirical implications, including calibration exercises, method-of-moment procedures, and likelihood-based procedures, both classical and Bayesian. The authors look at recent strides that have been made to enhance numerical efficiency, consider the expanded applicability of dynamic factor models, and examine the use of alternative assumptions involving learning and rational inattention on the part of decision makers. The treatment of methodologies for obtaining nonlinear model representations has been expanded, and linear and nonlinear model representations are integrated throughout the text. The book offers a rich array of implementation algorithms, sample empirical applications, and supporting computer code. Structural Macroeconometrics is the ideal textbook for graduate students seeking an introduction to macroeconomics and econometrics, and for advanced students pursuing applied research in macroeconomics. The book's historical perspective, along with its broad presentation of alternative methodologies, makes it an indispensable resource for academics and professionals.
Book Synopsis Methods for Applied Macroeconomic Research by : Fabio Canova
Download or read book Methods for Applied Macroeconomic Research written by Fabio Canova and published by Princeton University Press. This book was released on 2011-09-19 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last twenty years have witnessed tremendous advances in the mathematical, statistical, and computational tools available to applied macroeconomists. This rapidly evolving field has redefined how researchers test models and validate theories. Yet until now there has been no textbook that unites the latest methods and bridges the divide between theoretical and applied work. Fabio Canova brings together dynamic equilibrium theory, data analysis, and advanced econometric and computational methods to provide the first comprehensive set of techniques for use by academic economists as well as professional macroeconomists in banking and finance, industry, and government. This graduate-level textbook is for readers knowledgeable in modern macroeconomic theory, econometrics, and computational programming using RATS, MATLAB, or Gauss. Inevitably a modern treatment of such a complex topic requires a quantitative perspective, a solid dynamic theory background, and the development of empirical and numerical methods--which is where Canova's book differs from typical graduate textbooks in macroeconomics and econometrics. Rather than list a series of estimators and their properties, Canova starts from a class of DSGE models, finds an approximate linear representation for the decision rules, and describes methods needed to estimate their parameters, examining their fit to the data. The book is complete with numerous examples and exercises. Today's economic analysts need a strong foundation in both theory and application. Methods for Applied Macroeconomic Research offers the essential tools for the next generation of macroeconomists.
Book Synopsis High-Frequency Financial Econometrics by : Yacine Aït-Sahalia
Download or read book High-Frequency Financial Econometrics written by Yacine Aït-Sahalia and published by Princeton University Press. This book was released on 2014-07-21 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to the statistical and econometric methods for analyzing high-frequency financial data High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Aït-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Aït-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Aït-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike.
Book Synopsis Bayesian Multivariate Time Series Methods for Empirical Macroeconomics by : Gary Koop
Download or read book Bayesian Multivariate Time Series Methods for Empirical Macroeconomics written by Gary Koop and published by Now Publishers Inc. This book was released on 2010 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Multivariate Time Series Methods for Empirical Macroeconomics provides a survey of the Bayesian methods used in modern empirical macroeconomics. These models have been developed to address the fact that most questions of interest to empirical macroeconomists involve several variables and must be addressed using multivariate time series methods. Many different multivariate time series models have been used in macroeconomics, but Vector Autoregressive (VAR) models have been among the most popular. Bayesian Multivariate Time Series Methods for Empirical Macroeconomics reviews and extends the Bayesian literature on VARs, TVP-VARs and TVP-FAVARs with a focus on the practitioner. The authors go beyond simply defining each model, but specify how to use them in practice, discuss the advantages and disadvantages of each and offer tips on when and why each model can be used.
Book Synopsis Economic Analysis of the Digital Economy by : Avi Goldfarb
Download or read book Economic Analysis of the Digital Economy written by Avi Goldfarb and published by University of Chicago Press. This book was released on 2015-05-08 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a small and growing literature that explores the impact of digitization in a variety of contexts, but its economic consequences, surprisingly, remain poorly understood. This volume aims to set the agenda for research in the economics of digitization, with each chapter identifying a promising area of research. "Economics of Digitization "identifies urgent topics with research already underway that warrant further exploration from economists. In addition to the growing importance of digitization itself, digital technologies have some features that suggest that many well-studied economic models may not apply and, indeed, so many aspects of the digital economy throw normal economics in a loop. "Economics of Digitization" will be one of the first to focus on the economic implications of digitization and to bring together leading scholars in the economics of digitization to explore emerging research.
Book Synopsis Structural Vector Autoregressive Analysis by : Lutz Kilian
Download or read book Structural Vector Autoregressive Analysis written by Lutz Kilian and published by Cambridge University Press. This book was released on 2017-11-23 with total page 757 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the econometric foundations of structural vector autoregressive modeling, as used in empirical macroeconomics, finance, and related fields.
Book Synopsis Bayesian Econometric Methods by : Joshua Chan
Download or read book Bayesian Econometric Methods written by Joshua Chan and published by Cambridge University Press. This book was released on 2019-08-15 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrates Bayesian theory and application through a series of exercises in question and answer format.
Book Synopsis Assessing Dsge Models with Capital Accumulation and Indeterminacy by : Mr.Vadim Khramov
Download or read book Assessing Dsge Models with Capital Accumulation and Indeterminacy written by Mr.Vadim Khramov and published by International Monetary Fund. This book was released on 2012-03-01 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: The simulated results of this paper show that New Keynesian DSGE models with capital accumulation can generate substantial persistencies in the dynamics of the main economic variables, due to the stock nature of capital. Empirical estimates on U.S. data from 1960:I to 2008:I show the response of monetary policy to inflation was almost twice lower than traditionally considered, as capital accumulation creates an additional channel of influence through real interest rates in the production sector. Versions of the model with indeterminacy empirically outperform determinate versions. This paper allows for the reconsideration of previous findings and has significant monetary policy implications.
Book Synopsis Handbook of Monetary Economics by : Benjamin M. Friedman
Download or read book Handbook of Monetary Economics written by Benjamin M. Friedman and published by . This book was released on 1990 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Econometrics of Individual Risk by : Christian Gourieroux
Download or read book The Econometrics of Individual Risk written by Christian Gourieroux and published by Princeton University Press. This book was released on 2015-07-28 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The individual risks faced by banks, insurers, and marketers are less well understood than aggregate risks such as market-price changes. But the risks incurred or carried by individual people, companies, insurance policies, or credit agreements can be just as devastating as macroevents such as share-price fluctuations. A comprehensive introduction, The Econometrics of Individual Risk is the first book to provide a complete econometric methodology for quantifying and managing this underappreciated but important variety of risk. The book presents a course in the econometric theory of individual risk illustrated by empirical examples. And, unlike other texts, it is focused entirely on solving the actual individual risk problems businesses confront today. Christian Gourieroux and Joann Jasiak emphasize the microeconometric aspect of risk analysis by extensively discussing practical problems such as retail credit scoring, credit card transaction dynamics, and profit maximization in promotional mailing. They address regulatory issues in sections on computing the minimum capital reserve for coverage of potential losses, and on the credit-risk measure CreditVar. The book will interest graduate students in economics, business, finance, and actuarial studies, as well as actuaries and financial analysts.
Book Synopsis Accelerating Monte Carlo methods for Bayesian inference in dynamical models by : Johan Dahlin
Download or read book Accelerating Monte Carlo methods for Bayesian inference in dynamical models written by Johan Dahlin and published by Linköping University Electronic Press. This book was released on 2016-03-22 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Book Synopsis Bayesian Inference in Dynamic Econometric Models by : Luc Bauwens
Download or read book Bayesian Inference in Dynamic Econometric Models written by Luc Bauwens and published by OUP Oxford. This book was released on 2000-01-06 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.
Book Synopsis Bayesian Econometrics by : Mauro Bernardi
Download or read book Bayesian Econometrics written by Mauro Bernardi and published by MDPI. This book was released on 2020-12-28 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the advent of Markov chain Monte Carlo (MCMC) methods in the early 1990s, Bayesian methods have been proposed for a large and growing number of applications. One of the main advantages of Bayesian inference is the ability to deal with many different sources of uncertainty, including data, models, parameters and parameter restriction uncertainties, in a unified and coherent framework. This book contributes to this literature by collecting a set of carefully evaluated contributions that are grouped amongst two topics in financial economics. The first three papers refer to macro-finance issues for real economy, including the elasticity of factor substitution (ES) in the Cobb–Douglas production function, the effects of government public spending components, and quantitative easing, monetary policy and economics. The last three contributions focus on cryptocurrency and stock market predictability. All arguments are central ingredients in the current economic discussion and their importance has only been further emphasized by the COVID-19 crisis.
Book Synopsis Handbook of Computable General Equilibrium Modeling by : Peter B. Dixon
Download or read book Handbook of Computable General Equilibrium Modeling written by Peter B. Dixon and published by Newnes. This book was released on 2013-11-14 with total page 1143 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this collection of 17 articles, top scholars synthesize and analyze scholarship on this widely used tool of policy analysis, setting forth its accomplishments, difficulties, and means of implementation. Though CGE modeling does not play a prominent role in top US graduate schools, it is employed universally in the development of economic policy. This collection is particularly important because it presents a history of modeling applications and examines competing points of view. - Presents coherent summaries of CGE theories that inform major model types - Covers the construction of CGE databases, model solving, and computer-assisted interpretation of results - Shows how CGE modeling has made a contribution to economic policy