Basic Concepts of Synthetic Differential Geometry

Download Basic Concepts of Synthetic Differential Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475745885
Total Pages : 331 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Basic Concepts of Synthetic Differential Geometry by : R. Lavendhomme

Download or read book Basic Concepts of Synthetic Differential Geometry written by R. Lavendhomme and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians.

Synthetic Differential Geometry

Download Synthetic Differential Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521687381
Total Pages : 245 pages
Book Rating : 4.5/5 (216 download)

DOWNLOAD NOW!


Book Synopsis Synthetic Differential Geometry by : Anders Kock

Download or read book Synthetic Differential Geometry written by Anders Kock and published by Cambridge University Press. This book was released on 2006-06-22 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2006, details how limit processes can be represented algebraically.

Synthetic Geometry of Manifolds

Download Synthetic Geometry of Manifolds PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521116732
Total Pages : 317 pages
Book Rating : 4.5/5 (211 download)

DOWNLOAD NOW!


Book Synopsis Synthetic Geometry of Manifolds by : Anders Kock

Download or read book Synthetic Geometry of Manifolds written by Anders Kock and published by Cambridge University Press. This book was released on 2010 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This elegant book is sure to become the standard introduction to synthetic differential geometry. It deals with some classical spaces in differential geometry, namely 'prolongation spaces' or neighborhoods of the diagonal. These spaces enable a natural description of some of the basic constructions in local differential geometry and, in fact, form an inviting gateway to differential geometry, and also to some differential-geometric notions that exist in algebraic geometry. The presentation conveys the real strength of this approach to differential geometry. Concepts are clarified, proofs are streamlined, and the focus on infinitesimal spaces motivates the discussion well. Some of the specific differential-geometric theories dealt with are connection theory (notably affine connections), geometric distributions, differential forms, jet bundles, differentiable groupoids, differential operators, Riemannian metrics, and harmonic maps. Ideal for graduate students and researchers wishing to familiarize themselves with the field.

Synthetic Differential Topology

Download Synthetic Differential Topology PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108447236
Total Pages : 234 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Synthetic Differential Topology by : Marta Bunge

Download or read book Synthetic Differential Topology written by Marta Bunge and published by Cambridge University Press. This book was released on 2018-03-29 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Represents the state of the art in the new field of synthetic differential topology.

Mathematical Logic and Theoretical Computer Science

Download Mathematical Logic and Theoretical Computer Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000111512
Total Pages : pages
Book Rating : 4.0/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Logic and Theoretical Computer Science by : David Kueker

Download or read book Mathematical Logic and Theoretical Computer Science written by David Kueker and published by CRC Press. This book was released on 2020-12-22 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Logic and Theoretical Computer Science covers various topics ranging from recursion theory to Zariski topoi. Leading international authorities discuss selected topics in a number of areas, including denotational semanitcs, reccuriosn theoretic aspects fo computer science, model theory and algebra, Automath and automated reasoning, stability theory, topoi and mathematics, and topoi and logic. The most up-to-date review available in its field, Mathematical Logic and Theoretical Computer Science will be of interest to mathematical logicians, computer scientists, algebraists, algebraic geometers, differential geometers, differential topologists, and graduate students in mathematics and computer science.

Models for Smooth Infinitesimal Analysis

Download Models for Smooth Infinitesimal Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 147574143X
Total Pages : 401 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Models for Smooth Infinitesimal Analysis by : Ieke Moerdijk

Download or read book Models for Smooth Infinitesimal Analysis written by Ieke Moerdijk and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.

The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics

Download The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030187071
Total Pages : 320 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics by : John L. Bell

Download or read book The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics written by John L. Bell and published by Springer Nature. This book was released on 2019-09-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled ‘The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,’ reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,’ discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincaré, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.

A Primer of Infinitesimal Analysis

Download A Primer of Infinitesimal Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521887186
Total Pages : 7 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Primer of Infinitesimal Analysis by : John L. Bell

Download or read book A Primer of Infinitesimal Analysis written by John L. Bell and published by Cambridge University Press. This book was released on 2008-04-07 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.

Categories in Continuum Physics

Download Categories in Continuum Physics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540397604
Total Pages : 131 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Categories in Continuum Physics by : F. William Lawvere

Download or read book Categories in Continuum Physics written by F. William Lawvere and published by Springer. This book was released on 2006-11-14 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Differential Geometry and Lie Groups

Download Differential Geometry and Lie Groups PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030460479
Total Pages : 627 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Lie Groups by : Jean Gallier

Download or read book Differential Geometry and Lie Groups written by Jean Gallier and published by Springer Nature. This book was released on 2020-08-18 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explores advanced topics in differential geometry, chosen for their particular relevance to modern geometry processing. Analytic and algebraic perspectives augment core topics, with the authors taking care to motivate each new concept. Whether working toward theoretical or applied questions, readers will appreciate this accessible exploration of the mathematical concepts behind many modern applications. Beginning with an in-depth study of tensors and differential forms, the authors go on to explore a selection of topics that showcase these tools. An analytic theme unites the early chapters, which cover distributions, integration on manifolds and Lie groups, spherical harmonics, and operators on Riemannian manifolds. An exploration of bundles follows, from definitions to connections and curvature in vector bundles, culminating in a glimpse of Pontrjagin and Chern classes. The final chapter on Clifford algebras and Clifford groups draws the book to an algebraic conclusion, which can be seen as a generalized viewpoint of the quaternions. Differential Geometry and Lie Groups: A Second Course captures the mathematical theory needed for advanced study in differential geometry with a view to furthering geometry processing capabilities. Suited to classroom use or independent study, the text will appeal to students and professionals alike. A first course in differential geometry is assumed; the authors’ companion volume Differential Geometry and Lie Groups: A Computational Perspective provides the ideal preparation.

Euclidean Plane and Its Relatives

Download Euclidean Plane and Its Relatives PDF Online Free

Author :
Publisher :
ISBN 13 : 9781537649511
Total Pages : 192 pages
Book Rating : 4.6/5 (495 download)

DOWNLOAD NOW!


Book Synopsis Euclidean Plane and Its Relatives by : Anton Petrunin

Download or read book Euclidean Plane and Its Relatives written by Anton Petrunin and published by . This book was released on 2016-09-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book grew from my lecture notes. It is designed for a semester-long course in Foundations of Geometry and meant to be rigorous, conservative, elementary and minimalistic.

The Four Pillars of Geometry

Download The Four Pillars of Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387255303
Total Pages : 240 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis The Four Pillars of Geometry by : John Stillwell

Download or read book The Four Pillars of Geometry written by John Stillwell and published by Springer Science & Business Media. This book was released on 2005-08-09 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises

Higher Geometry

Download Higher Geometry PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 446 pages
Book Rating : 4.:/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Higher Geometry by : Frederick Shenstone Woods

Download or read book Higher Geometry written by Frederick Shenstone Woods and published by . This book was released on 1922 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Conceptual Mathematics

Download Conceptual Mathematics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521894859
Total Pages : 409 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Conceptual Mathematics by : F. William Lawvere

Download or read book Conceptual Mathematics written by F. William Lawvere and published by Cambridge University Press. This book was released on 2009-07-30 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This truly elementary book on categories introduces retracts, graphs, and adjoints to students and scientists.

Computer Aided Engineering Design

Download Computer Aided Engineering Design PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402038712
Total Pages : 410 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Computer Aided Engineering Design by : Anupam Saxena

Download or read book Computer Aided Engineering Design written by Anupam Saxena and published by Springer Science & Business Media. This book was released on 2007-12-08 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new discipline is said to attain maturity when the subject matter takes the shape of a textbook. Several textbooks later, the discipline tends to acquire a firm place in the curriculum for teaching and learning. Computer Aided Engineering Design (CAED), barely three decades old, is interdisciplinary in nature whose boundaries are still expanding. However, it draws its core strength from several acknowledged and diverse areas such as computer graphics, differential geometry, Boolean algebra, computational geometry, topological spaces, numerical analysis, mechanics of solids, engineering design and a few others. CAED also needs to show its strong linkages with Computer Aided Manufacturing (CAM). As is true with any growing discipline, the literature is widespread in research journals, edited books, and conference proceedings. Various textbooks have appeared with different biases, like geometric modeling, computer graphics, and CAD/CAM over the last decade. This book goes into mathematical foundations and the core subjects of CAED without allowing itself to be overshadowed by computer graphics. It is written in a logical and thorough manner for use mainly by senior and graduate level students as well as users and developers of CAD software. The book covers (a) The fundamental concepts of geometric modeling so that a real understanding of designing synthetic surfaces and solid modeling can be achieved. (b) A wide spectrum of CAED topics such as CAD of linkages and machine elements, finite element analysis, optimization. (c) Application of these methods to real world problems.

Differential Topology

Download Differential Topology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821851934
Total Pages : 242 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Differential Topology by : Victor Guillemin

Download or read book Differential Topology written by Victor Guillemin and published by American Mathematical Soc.. This book was released on 2010 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincaré-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance. The book is suitable for either an introductory graduate course or an advanced undergraduate course.

A History of Geometrical Methods

Download A History of Geometrical Methods PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486158535
Total Pages : 484 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis A History of Geometrical Methods by : Julian Lowell Coolidge

Download or read book A History of Geometrical Methods written by Julian Lowell Coolidge and published by Courier Corporation. This book was released on 2013-02-27 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Full and authoritative, this history of the techniques for dealing with geometric questions begins with synthetic geometry and its origins in Babylonian and Egyptian mathematics; reviews the contributions of China, Japan, India, and Greece; and discusses the non-Euclidean geometries. Subsequent sections cover algebraic geometry, starting with the precursors and advancing to the great awakening with Descartes; and differential geometry, from the early work of Huygens and Newton to projective and absolute differential geometry. The author's emphasis on proofs and notations, his comparisons between older and newer methods, and his references to over 600 primary and secondary sources make this book an invaluable reference. 1940 edition.