Automated Design of Machine Learning and Search Algorithms

Download Automated Design of Machine Learning and Search Algorithms PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030720691
Total Pages : 187 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Automated Design of Machine Learning and Search Algorithms by : Nelishia Pillay

Download or read book Automated Design of Machine Learning and Search Algorithms written by Nelishia Pillay and published by Springer Nature. This book was released on 2021-07-28 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advances in automated machine learning (AutoML) and automated algorithm design and indicates the future directions in this fast-developing area. Methods have been developed to automate the design of neural networks, heuristics and metaheuristics using techniques such as metaheuristics, statistical techniques, machine learning and hyper-heuristics. The book first defines the field of automated design, distinguishing it from the similar but different topics of automated algorithm configuration and automated algorithm selection. The chapters report on the current state of the art by experts in the field and include reviews of AutoML and automated design of search, theoretical analyses of automated algorithm design, automated design of control software for robot swarms, and overfitting as a benchmark and design tool. Also covered are automated generation of constructive and perturbative low-level heuristics, selection hyper-heuristics for automated design, automated design of deep-learning approaches using hyper-heuristics, genetic programming hyper-heuristics with transfer knowledge and automated design of classification algorithms. The book concludes by examining future research directions of this rapidly evolving field. The information presented here will especially interest researchers and practitioners in the fields of artificial intelligence, computational intelligence, evolutionary computation and optimisation.

Automated Design of Machine Learning and Search Algorithms

Download Automated Design of Machine Learning and Search Algorithms PDF Online Free

Author :
Publisher :
ISBN 13 : 9783030720704
Total Pages : 0 pages
Book Rating : 4.7/5 (27 download)

DOWNLOAD NOW!


Book Synopsis Automated Design of Machine Learning and Search Algorithms by : Nelishia Pillay

Download or read book Automated Design of Machine Learning and Search Algorithms written by Nelishia Pillay and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advances in automated machine learning (AutoML) and automated algorithm design and indicates the future directions in this fast-developing area. Methods have been developed to automate the design of neural networks, heuristics and metaheuristics using techniques such as metaheuristics, statistical techniques, machine learning and hyper-heuristics. The book first defines the field of automated design, distinguishing it from the similar but different topics of automated algorithm configuration and automated algorithm selection. The chapters report on the current state of the art by experts in the field and include reviews of AutoML and automated design of search, theoretical analyses of automated algorithm design, automated design of control software for robot swarms, and overfitting as a benchmark and design tool. Also covered are automated generation of constructive and perturbative low-level heuristics, selection hyper-heuristics for automated design, automated design of deep-learning approaches using hyper-heuristics, genetic programming hyper-heuristics with transfer knowledge and automated design of classification algorithms. The book concludes by examining future research directions of this rapidly evolving field. The information presented here will especially interest researchers and practitioners in the fields of artificial intelligence, computational intelligence, evolutionary computation and optimisation.

Automated Machine Learning

Download Automated Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030053180
Total Pages : 223 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Automated Machine Learning by : Frank Hutter

Download or read book Automated Machine Learning written by Frank Hutter and published by Springer. This book was released on 2019-05-17 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.

Automated Machine Learning

Download Automated Machine Learning PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800565526
Total Pages : 312 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Automated Machine Learning by : Adnan Masood

Download or read book Automated Machine Learning written by Adnan Masood and published by Packt Publishing Ltd. This book was released on 2021-02-18 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies Key FeaturesGet up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choiceEliminate mundane tasks in data engineering and reduce human errors in machine learning modelsFind out how you can make machine learning accessible for all users to promote decentralized processesBook Description Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort. This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you’ll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle. By the end of this machine learning book, you’ll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks. What you will learnExplore AutoML fundamentals, underlying methods, and techniquesAssess AutoML aspects such as algorithm selection, auto featurization, and hyperparameter tuning in an applied scenarioFind out the difference between cloud and operations support systems (OSS)Implement AutoML in enterprise cloud to deploy ML models and pipelinesBuild explainable AutoML pipelines with transparencyUnderstand automated feature engineering and time series forecastingAutomate data science modeling tasks to implement ML solutions easily and focus on more complex problemsWho this book is for Citizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open source tools, Microsoft Azure Machine Learning, AWS, and Google Cloud Platform will find this book useful. Beginner-level knowledge of building ML models is required to get the best out of this book. Prior experience in using Enterprise cloud is beneficial.

Machine Learning for Automated Theorem Proving

Download Machine Learning for Automated Theorem Proving PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680838985
Total Pages : 202 pages
Book Rating : 4.8/5 (389 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Automated Theorem Proving by : Sean B. Holden

Download or read book Machine Learning for Automated Theorem Proving written by Sean B. Holden and published by . This book was released on 2021-11-22 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the author presents the results of his thorough and systematic review of the research at the intersection of two apparently rather unrelated fields: Automated Theorem Proving (ATP) and Machine Learning (ML).

Understanding Machine Learning

Download Understanding Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107057132
Total Pages : 415 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Theory and Practice of Natural Computing

Download Theory and Practice of Natural Computing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030904253
Total Pages : 126 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Theory and Practice of Natural Computing by : Claus Aranha

Download or read book Theory and Practice of Natural Computing written by Claus Aranha and published by Springer Nature. This book was released on 2021-11-03 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 10th International Conference on Theory and Practice of Natural Computing, TPNC 2021, held virtually, in December 2021. The 9 full papers presented together with 3 invited talks, in this book were carefully reviewed and selected from 14 submissions. The papers are organized in topical sections named Applications of Natural Computing, Deep Learning and Transfer Learning, Evolutionary and Swarm Algorithms.

Autonomous Search

Download Autonomous Search PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642214347
Total Pages : 308 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Autonomous Search by : Youssef Hamadi

Download or read book Autonomous Search written by Youssef Hamadi and published by Springer Science & Business Media. This book was released on 2012-01-05 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decades of innovations in combinatorial problem solving have produced better and more complex algorithms. These new methods are better since they can solve larger problems and address new application domains. They are also more complex which means that they are hard to reproduce and often harder to fine-tune to the peculiarities of a given problem. This last point has created a paradox where efficient tools are out of reach of practitioners. Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search "crosses the chasm" and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms. Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search "crosses the chasm" and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.

The Executive's How-To Guide to Automation

Download The Executive's How-To Guide to Automation PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319997890
Total Pages : 163 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis The Executive's How-To Guide to Automation by : George E. Danner

Download or read book The Executive's How-To Guide to Automation written by George E. Danner and published by Springer. This book was released on 2018-12-17 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: From driverless cars to pilotless planes, many functions that have previously required human labor can now be performed using artificial intelligence. For businesses, this use of AI results in reduced labor costs and, even more important, creating a competitive advantage. How does one look at any organization and begin the work of automating it in sensible ways? This book provides the blueprint for automating critical business functions of all kinds. It outlines the skills and technologies that must be brought to bear on replicating human-like thinking and judgment in the form of algorithms. Many believe that algorithm design is the exclusive purview of computer scientists and experienced programmers. This book aims to dispel that notion. An algorithm is merely a set of rules, and anyone with the ability to envision how different components of a business can interact with other components already has the ability to work in algorithms. Though many fear that the use of automation in business means human labor will no longer be needed, the author argues that organizations will re-purpose humans into different roles under the banner of automation, not simply get rid of them. He also identifies parts of business that are best targeted for automation. This book will arm business people with the tools needed to automate companies, making them perform better, move faster, operate cheaper, and provide great lasting value to investors.

Learning and Intelligent Optimization

Download Learning and Intelligent Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030921212
Total Pages : 423 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Learning and Intelligent Optimization by : Dimitris E. Simos

Download or read book Learning and Intelligent Optimization written by Dimitris E. Simos and published by Springer Nature. This book was released on 2021-12-08 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed post-conference proceedings on Learning and Intelligent Optimization, LION 15, held in Athens, Greece, in June 2021. The 30 full papers presented have been carefully reviewed and selected from 35 submissions. LION deals with designing and engineering ways of "learning" about the performance of different techniques, and ways of using past experience about the algorithm behavior to improve performance in the future. Intelligent learning schemes for mining the knowledge obtained online or offline can improve the algorithm design process and simplify the applications of high-performance optimization methods. Combinations of different algorithms can further improve the robustness and performance of the individual components.

The Ethical Algorithm

Download The Ethical Algorithm PDF Online Free

Author :
Publisher :
ISBN 13 : 0190948205
Total Pages : 229 pages
Book Rating : 4.1/5 (99 download)

DOWNLOAD NOW!


Book Synopsis The Ethical Algorithm by : Michael Kearns

Download or read book The Ethical Algorithm written by Michael Kearns and published by . This book was released on 2020 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms have made our lives more efficient and entertaining--but not without a significant cost. Can we design a better future, one in which societial gains brought about by technology are balanced with the rights of citizens? The Ethical Algorithm offers a set of principled solutions based on the emerging and exciting science of socially aware algorithm design.

Swarm Intelligence

Download Swarm Intelligence PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031201760
Total Pages : 395 pages
Book Rating : 4.0/5 (312 download)

DOWNLOAD NOW!


Book Synopsis Swarm Intelligence by : Marco Dorigo

Download or read book Swarm Intelligence written by Marco Dorigo and published by Springer Nature. This book was released on 2022-10-28 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 13th International Conference on Swarm Intelligence, ANTS 2022, held in Málaga, Spain, in November 2022. The 19 full papers presented, together with 14 short papers and 4 extended abstracts were carefully reviewed and selected from 45 submissions. ANTS 2022 contributions are dealing with any aspect of swarm intelligence such as behavioral models of social insects, empirical and theoretical research in swarm intelligence, application of swarm intelligence methods, and much more.

Artificial Intelligence in Healthcare

Download Artificial Intelligence in Healthcare PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128184396
Total Pages : 385 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in Healthcare by : Adam Bohr

Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Machine Learning in VLSI Computer-Aided Design

Download Machine Learning in VLSI Computer-Aided Design PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030046664
Total Pages : 697 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in VLSI Computer-Aided Design by : Ibrahim (Abe) M. Elfadel

Download or read book Machine Learning in VLSI Computer-Aided Design written by Ibrahim (Abe) M. Elfadel and published by Springer. This book was released on 2019-03-15 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center

Designing Autonomous AI

Download Designing Autonomous AI PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1098110706
Total Pages : 253 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Designing Autonomous AI by : Kence Anderson

Download or read book Designing Autonomous AI written by Kence Anderson and published by "O'Reilly Media, Inc.". This book was released on 2022-06-14 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Early rules-based artificial intelligence demonstrated intriguing decision-making capabilities but lacked perception and didn't learn. AI today, primed with machine learning perception and deep reinforcement learning capabilities, can perform superhuman decision-making for specific tasks. This book shows you how to combine the practicality of early AI with deep learning capabilities and industrial control technologies to make robust decisions in the real world. Using concrete examples, minimal theory, and a proven architectural framework, author Kence Anderson demonstrates how to teach autonomous AI explicit skills and strategies. You'll learn when and how to use and combine various AI architecture design patterns, as well as how to design advanced AI without needing to manipulate neural networks or machine learning algorithms. Students, process operators, data scientists, machine learning algorithm experts, and engineers who own and manage industrial processes can use the methodology in this book to design autonomous AI. This book examines: Differences between and limitations of automated, autonomous, and human decision-making Unique advantages of autonomous AI for real-time decision-making, with use cases How to design an autonomous AI from modular components and document your designs

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Download Explainable AI: Interpreting, Explaining and Visualizing Deep Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030289540
Total Pages : 435 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Explainable AI: Interpreting, Explaining and Visualizing Deep Learning by : Wojciech Samek

Download or read book Explainable AI: Interpreting, Explaining and Visualizing Deep Learning written by Wojciech Samek and published by Springer Nature. This book was released on 2019-09-10 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

Machine Learning for Algorithmic Trading

Download Machine Learning for Algorithmic Trading PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1839216786
Total Pages : 822 pages
Book Rating : 4.8/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Algorithmic Trading by : Stefan Jansen

Download or read book Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.