Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Asynchronous Subgradient Push
Download Asynchronous Subgradient Push full books in PDF, epub, and Kindle. Read online Asynchronous Subgradient Push ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Distributed Optimization in Networked Systems by : Qingguo Lü
Download or read book Distributed Optimization in Networked Systems written by Qingguo Lü and published by Springer Nature. This book was released on 2023-02-08 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on improving the performance (convergence rate, communication efficiency, computational efficiency, etc.) of algorithms in the context of distributed optimization in networked systems and their successful application to real-world applications (smart grids and online learning). Readers may be particularly interested in the sections on consensus protocols, optimization skills, accelerated mechanisms, event-triggered strategies, variance-reduction communication techniques, etc., in connection with distributed optimization in various networked systems. This book offers a valuable reference guide for researchers in distributed optimization and for senior undergraduate and graduate students alike.
Book Synopsis Distributed Optimization: Advances in Theories, Methods, and Applications by : Huaqing Li
Download or read book Distributed Optimization: Advances in Theories, Methods, and Applications written by Huaqing Li and published by Springer Nature. This book was released on 2020-08-04 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a valuable reference guide for researchers in distributed optimization and for senior undergraduate and graduate students alike. Focusing on the natures and functions of agents, communication networks and algorithms in the context of distributed optimization for networked control systems, this book introduces readers to the background of distributed optimization; recent developments in distributed algorithms for various types of underlying communication networks; the implementation of computation-efficient and communication-efficient strategies in the execution of distributed algorithms; and the frameworks of convergence analysis and performance evaluation. On this basis, the book then thoroughly studies 1) distributed constrained optimization and the random sleep scheme, from an agent perspective; 2) asynchronous broadcast-based algorithms, event-triggered communication, quantized communication, unbalanced directed networks, and time-varying networks, from a communication network perspective; and 3) accelerated algorithms and stochastic gradient algorithms, from an algorithm perspective. Finally, the applications of distributed optimization in large-scale statistical learning, wireless sensor networks, and for optimal energy management in smart grids are discussed.
Book Synopsis Large-Scale and Distributed Optimization by : Pontus Giselsson
Download or read book Large-Scale and Distributed Optimization written by Pontus Giselsson and published by Springer. This book was released on 2018-11-11 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents tools and methods for large-scale and distributed optimization. Since many methods in "Big Data" fields rely on solving large-scale optimization problems, often in distributed fashion, this topic has over the last decade emerged to become very important. As well as specific coverage of this active research field, the book serves as a powerful source of information for practitioners as well as theoreticians. Large-Scale and Distributed Optimization is a unique combination of contributions from leading experts in the field, who were speakers at the LCCC Focus Period on Large-Scale and Distributed Optimization, held in Lund, 14th–16th June 2017. A source of information and innovative ideas for current and future research, this book will appeal to researchers, academics, and students who are interested in large-scale optimization.
Book Synopsis Parallel and Distributed Computation: Numerical Methods by : Dimitri Bertsekas
Download or read book Parallel and Distributed Computation: Numerical Methods written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2015-03-01 with total page 832 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly acclaimed work, first published by Prentice Hall in 1989, is a comprehensive and theoretically sound treatment of parallel and distributed numerical methods. It focuses on algorithms that are naturally suited for massive parallelization, and it explores the fundamental convergence, rate of convergence, communication, and synchronization issues associated with such algorithms. This is an extensive book, which aside from its focus on parallel and distributed algorithms, contains a wealth of material on a broad variety of computation and optimization topics. It is an excellent supplement to several of our other books, including Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 1999), Dynamic Programming and Optimal Control (Athena Scientific, 2012), Neuro-Dynamic Programming (Athena Scientific, 1996), and Network Optimization (Athena Scientific, 1998). The on-line edition of the book contains a 95-page solutions manual.
Book Synopsis Artificial Intelligence by : Lu Fang
Download or read book Artificial Intelligence written by Lu Fang and published by Springer Nature. This book was released on 2022-12-16 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume set LNCS 13604-13606 constitutes revised selected papers presented at the Second CAAI International Conference on Artificial Intelligence, held in Beijing, China, in August 2022. CICAI is a summit forum in the field of artificial intelligence and the 2022 forum was hosted by Chinese Association for Artificial Intelligence (CAAI). The 164 papers were thoroughly reviewed and selected from 521 submissions. CICAI aims to establish a global platform for international academic exchange, promote advanced research in AI and its affiliated disciplines such as machine learning, computer vision, natural language, processing, and data mining, amongst others.
Book Synopsis Neural Information Processing by : Biao Luo
Download or read book Neural Information Processing written by Biao Luo and published by Springer Nature. This book was released on 2023-11-13 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: The six-volume set LNCS 14447 until 14452 constitutes the refereed proceedings of the 30th International Conference on Neural Information Processing, ICONIP 2023, held in Changsha, China, in November 2023. The 652 papers presented in the proceedings set were carefully reviewed and selected from 1274 submissions. They focus on theory and algorithms, cognitive neurosciences; human centred computing; applications in neuroscience, neural networks, deep learning, and related fields.
Book Synopsis Multi-agent Optimization by : Angelia Nedić
Download or read book Multi-agent Optimization written by Angelia Nedić and published by Springer. This book was released on 2018-11-01 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains three well-written research tutorials that inform the graduate reader about the forefront of current research in multi-agent optimization. These tutorials cover topics that have not yet found their way in standard books and offer the reader the unique opportunity to be guided by major researchers in the respective fields. Multi-agent optimization, lying at the intersection of classical optimization, game theory, and variational inequality theory, is at the forefront of modern optimization and has recently undergone a dramatic development. It seems timely to provide an overview that describes in detail ongoing research and important trends. This book concentrates on Distributed Optimization over Networks; Differential Variational Inequalities; and Advanced Decomposition Algorithms for Multi-agent Systems. This book will appeal to both mathematicians and mathematically oriented engineers and will be the source of inspiration for PhD students and researchers.
Book Synopsis Big Scientific Data Benchmarks, Architecture, and Systems by : Rui Ren
Download or read book Big Scientific Data Benchmarks, Architecture, and Systems written by Rui Ren and published by Springer. This book was released on 2019-01-11 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First Workshop on Big Scientific Data Benchmarks, Architecture, and Systems, SDBA 2018, held in Beijing, China, in June 2018. The 10 revised full papers presented were carefully reviewed and selected from 22 submissions. The papers are organized in topical sections on benchmarking; performance optimization; algorithms; big science data framework.
Download or read book Proceedings written by Michel Verleysen and published by Presses universitaires de Louvain. This book was released on 2015 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Distributed Optimization for Smart Cyber-Physical Networks by : Giuseppe Notarstefano
Download or read book Distributed Optimization for Smart Cyber-Physical Networks written by Giuseppe Notarstefano and published by . This book was released on 2019-12-11 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an increasingly connected world, the term cyber-physical networks has been coined to refer to the communication among devices that is turning smart devices into smart (cooperating) systems. The distinctive feature of such systems is that significant advantage can be obtained if its interconnected, complex nature is exploited. Several challenges arising in cyber-physical networks can be stated as optimization problems. Examples are estimation, decision, learning and control applications. In cyber-physical networks, the goal is to design algorithms, based on the exchange of information among the processors, that take advantage of the aggregated computational power. Distributed Optimization for Smart Cyber-Physical Networks provides a comprehensive overview of the most common approaches used to design distributed optimization algorithms, together with the theoretical analysis of the main schemes in their basic version. It identifies and formalizes classes of problem set-ups that arise in motivating application scenarios. For each set-up, in order to give the main tools for analysis, tailored distributed algorithms in simplified cases are reviewed. Extensions and generalizations of the basic schemes are also discussed at the end of each chapter. Distributed Optimization for Smart Cyber-Physical Networks provides the reader with an accessible overview of the current research and gives important pointers towards new developments. It is an excellent starting point for research and students unfamiliar with the topic.
Book Synopsis Distributed Optimization, Game and Learning Algorithms by : Huiwei Wang
Download or read book Distributed Optimization, Game and Learning Algorithms written by Huiwei Wang and published by Springer Nature. This book was released on 2021-01-04 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the fundamental theory of distributed optimization, game and learning. It includes those working directly in optimization,-and also many other issues like time-varying topology, communication delay, equality or inequality constraints,-and random projections. This book is meant for the researcher and engineer who uses distributed optimization, game and learning theory in fields like dynamic economic dispatch, demand response management and PHEV routing of smart grids.
Book Synopsis Complex Systems: Spanning Control and Computational Cybernetics: Foundations by : Peng Shi
Download or read book Complex Systems: Spanning Control and Computational Cybernetics: Foundations written by Peng Shi and published by Springer Nature. This book was released on 2022-08-24 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, dedicated to Professor Georgi M. Dimirovski on his anniversary, contains new research directions, challenges, and many relevant applications related to many aspects within the broadly perceived areas of systems and control, including signal analysis and intelligent systems. The project comprises two volumes with papers written by well known and very active researchers and practitioners. The first volume is focused on more foundational aspects related to general issues in systems science and mathematical systems, various problems in control and automation, and the use of computational and artificial intelligence in the context of systems modeling and control. The second volume is concerned with a presentation of relevant applications, notably in robotics, computer networks, telecommunication, fault detection/diagnosis, as well as in biology and medicine, and economic, financial, and social systems too.
Author :Christodoulos A. Floudas Publisher :Springer Science & Business Media ISBN 13 :0387747583 Total Pages :4646 pages Book Rating :4.3/5 (877 download)
Book Synopsis Encyclopedia of Optimization by : Christodoulos A. Floudas
Download or read book Encyclopedia of Optimization written by Christodoulos A. Floudas and published by Springer Science & Business Media. This book was released on 2008-09-04 with total page 4646 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".
Book Synopsis Introductory Lectures on Convex Optimization by : Y. Nesterov
Download or read book Introductory Lectures on Convex Optimization written by Y. Nesterov and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: It was in the middle of the 1980s, when the seminal paper by Kar markar opened a new epoch in nonlinear optimization. The importance of this paper, containing a new polynomial-time algorithm for linear op timization problems, was not only in its complexity bound. At that time, the most surprising feature of this algorithm was that the theoretical pre diction of its high efficiency was supported by excellent computational results. This unusual fact dramatically changed the style and direc tions of the research in nonlinear optimization. Thereafter it became more and more common that the new methods were provided with a complexity analysis, which was considered a better justification of their efficiency than computational experiments. In a new rapidly develop ing field, which got the name "polynomial-time interior-point methods", such a justification was obligatory. Afteralmost fifteen years of intensive research, the main results of this development started to appear in monographs [12, 14, 16, 17, 18, 19]. Approximately at that time the author was asked to prepare a new course on nonlinear optimization for graduate students. The idea was to create a course which would reflect the new developments in the field. Actually, this was a major challenge. At the time only the theory of interior-point methods for linear optimization was polished enough to be explained to students. The general theory of self-concordant functions had appeared in print only once in the form of research monograph [12].
Download or read book Deep Learning written by Ian Goodfellow and published by MIT Press. This book was released on 2016-11-10 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Book Synopsis Algebraic Graph Theory by : Chris Godsil
Download or read book Algebraic Graph Theory written by Chris Godsil and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents and illustrates the main tools and ideas of algebraic graph theory, with a primary emphasis on current rather than classical topics. It is designed to offer self-contained treatment of the topic, with strong emphasis on concrete examples.
Book Synopsis Probability: A Graduate Course by : Allan Gut
Download or read book Probability: A Graduate Course written by Allan Gut and published by Springer Science & Business Media. This book was released on 2006-03-16 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook on the theory of probability starts from the premise that rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to cover a number of subjects in detail, including chapters on inequalities, characteristic functions and convergence. This is followed by explanations of the three main subjects in probability: the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales.