Deep Learning with Python

Download Deep Learning with Python PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638352046
Total Pages : 597 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with Python by : Francois Chollet

Download or read book Deep Learning with Python written by Francois Chollet and published by Simon and Schuster. This book was released on 2017-11-30 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262337371
Total Pages : 801 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : Ian Goodfellow

Download or read book Deep Learning written by Ian Goodfellow and published by MIT Press. This book was released on 2016-11-10 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Deep Learning for Coders with fastai and PyTorch

Download Deep Learning for Coders with fastai and PyTorch PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492045497
Total Pages : 624 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781722222888
Total Pages : 90 pages
Book Rating : 4.2/5 (228 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : Rudolph Russell

Download or read book Deep Learning written by Rudolph Russell and published by Createspace Independent Publishing Platform. This book was released on 2018-07 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: DEEP LEARNING Buy the Paperback version of this book, and get the Kindle eBook version included for FREE! Do You Want to Become An Expert Of Deep Learning?? Start Getting this Book and Follow My Step by Step Explanations! Click Add To Cart Now! This book is for anyone who wants to learn deep learning from a mathematical perspective. In the first chapter you will get an introduction to the deep learning concepts, then in the second chapter you will understand and review some of the mathematical equations that will help you understand deep learning. After that, we will go delve further into the deep learning architectures, and after every chapter you will find review questions just to reinforce your understanding of the content. When reading this book, it's preferable to know any programming language, such as Python or R, and the basics of linear algebra. This book contains illustrations and step-by-step explanations with bullet points and exercises for easy and enjoyable learning Benefits of reading this book that you're not going to find anywhere else: INTRODUCTION TO DEEP LEARNING MATHEMATICS FOR DEEP LEARNING SINGLE AND MULTILAYER PERCEPTRON MODELS AUTOENCODERS, RESTRICTED BOLTZMANN MACHINES EXPERIMENTAL DESIGN AND HEURISTICS Don't miss out on this new step by step guide to Deep Learning. All you need to do is scroll up and click on the BUY NOW button to learn all about it!

Aprendizaje Profundo

Download Aprendizaje Profundo PDF Online Free

Author :
Publisher : Independently Published
ISBN 13 : 9781790321766
Total Pages : 122 pages
Book Rating : 4.3/5 (217 download)

DOWNLOAD NOW!


Book Synopsis Aprendizaje Profundo by : Sebastian Dark

Download or read book Aprendizaje Profundo written by Sebastian Dark and published by Independently Published. This book was released on 2018-11-25 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: ¿Sientes curiosidad por descubrir la tecnología revolucionaria que está configurando nuestro futuro y cambiando el mundo actual? El aprendizaje profundo es una parte del campo de la informática y un subconjunto del aprendizaje automático que implica que los sistemas informáticos puedan "aprender" sin supervisión con datos que no están etiquetados ni estructurados. En 2017, AlphaGo, que es una IA desarrollada por Google DeepMind y comenzó solo conociendo las reglas del juego, finalmente pudo entrenarse a sí mismo y vencer a Ke Jie, el jugador número 1 del mundo en ese momento. Si bien esto puede no parecer tan impresionante al principio, es importante comprender que Go es un juego muy complejo que muchos programadores no pudieron superar con la IA en el pasado. Aunque Go es un ejemplo interesante, las posibilidades de utilizar el aprendizaje automático son ilimitadas. Desde el comercio minorista a la medicina y a las finanzas, el aprendizaje automático tiene la capacidad de cambiar cada industria con la que entra en contacto. De hecho, esta revolución ya ha comenzado y solo seguirá creciendo. Según statista.com, la industria de la inteligencia artificial crecerá exponencialmente en los próximos años, ¡de $ 7 mil millones en 2018 a $ 90 mil millones en 2025! Esto no es algo que puedas permitirte perder. Sin lugar a dudas es el futuro. Sin embargo, es tan complejo como revolucionario. Si no tiene antecedentes o experiencia en el campo, es fácil que se atasque con todos los conceptos y términos complicados. Además, encontrar información que sea fácil de entender puede resultar un desafío porque lo más probable es que no sea exhaustiva, incluso si la encuentra. En este libro, encontrará el equilibrio perfecto entre la información, que es muy complete, y la capacidad de entenderla. Aunque está diseñado para principiantes, no contendrá información simple y de fácil acceso. Se le sumergirá profundamente en el campo, pero será conducido cuidadosamente a través de él de manera que todo sea fácil de entender, incluso si no tiene conocimientos técnicos en programación de computadoras. En esta Guía, descubrirá... Qué Es El Aprendizaje Automático Y El Aprendizaje Profundo Y Cómo Pueden Ser Utilizados Para Cambiar El Mundo. Cómo El Campo Puede Ser Dividido Y Aprendido De Una Manera Manejable Varias Aplicaciones Y Potencial De Aprendizaje Profundo Que Puede Utilizar, Que Puede Que Nunca Haya Imaginado Aprendizaje Supervisado Versus Aprendizaje No Supervisado - Y Analizarlos Paso A Paso Analizar Las Redes Neuronales De Una Manera Extremadamente Fácil De Entender Cómo Puede Crear Y Capacitar Modelos De Aprendizaje Profundo Dónde Y Cómo Instalar Los Mejores Programas Para Que Pueda Comenzar Hoy Códigos De Muestra Y Conjuntos De Datos Para Practicar ¡Y mucho más! Ya sé si está buscando obtener conocimientos para una carrera potencial en aprendizaje profundo, o aprender cómo esto afectará nuestro futuro, o simplemente satisfacer su curiosidad sobre el posible avance tecnológico más grande de nuestro tiempo, este libro lo ayudará enormemente a comprender el aprendizaje profundo. Si finalmente está preparado para comprender esta tecnología revolucionaria a un alto nivel a pesar de su experiencia técnica, Haga Clic en "Agregar al Carrito" ¡Ahora! ** ¡Obtenga la versión eBook de Kindle GRATIS cuando compre la versión impresa de este libro! **

Grokking Deep Learning

Download Grokking Deep Learning PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 163835720X
Total Pages : 475 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Grokking Deep Learning by : Andrew W. Trask

Download or read book Grokking Deep Learning written by Andrew W. Trask and published by Simon and Schuster. This book was released on 2019-01-23 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide

Deep Learning with PyTorch

Download Deep Learning with PyTorch PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638354073
Total Pages : 518 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with PyTorch by : Luca Pietro Giovanni Antiga

Download or read book Deep Learning with PyTorch written by Luca Pietro Giovanni Antiga and published by Simon and Schuster. This book was released on 2020-07-01 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: “We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production

Deep Learning for Natural Language Processing

Download Deep Learning for Natural Language Processing PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484236858
Total Pages : 290 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Natural Language Processing by : Palash Goyal

Download or read book Deep Learning for Natural Language Processing written by Palash Goyal and published by Apress. This book was released on 2018-06-26 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You’ll start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. What You Will Learn Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification Who This Book Is For Software developers who are curious to try out deep learning with NLP.

Deep Learning for Computer Vision

Download Deep Learning for Computer Vision PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 564 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Computer Vision by : Jason Brownlee

Download or read book Deep Learning for Computer Vision written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2019-04-04 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.

Aprendizaje automático y profundo en python

Download Aprendizaje automático y profundo en python PDF Online Free

Author :
Publisher : Ediciones de la U
ISBN 13 : 9587923154
Total Pages : 342 pages
Book Rating : 4.5/5 (879 download)

DOWNLOAD NOW!


Book Synopsis Aprendizaje automático y profundo en python by : Carlos Pineda Pertuz

Download or read book Aprendizaje automático y profundo en python written by Carlos Pineda Pertuz and published by Ediciones de la U. This book was released on 2022-01-28 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Es una herramienta de apoyo y de consulta para toda aquella persona interesada en dominar los fundamentos del aprendizaje automático y profundo, a tal punto que le permita aprender lo necesario para desarrollar sus propios modelos de aprendizaje aptos para realizar predicciones con base en los datos, para ello el autor hará uso en la mayoría de los casos de explicaciones teóricas y prácticas, que permitan al lector afianzar sus ideas y fortalecer su aprendizaje. El libro se encuentra dividido en dos partes la primera enfocada en el machine learning y sus diferentes algoritmos de regresión y clasificación, clustering, entre otros. La segunda parte comprende varias técnicas de deep learning donde estudiaremos diferentes arquitecturas de redes neuronales como: redes densamente conectadas, redes convolucionales y redes recurrentes.

Deep Learning for Natural Language Processing

Download Deep Learning for Natural Language Processing PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 413 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Natural Language Processing by : Jason Brownlee

Download or read book Deep Learning for Natural Language Processing written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2017-11-21 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning methods are achieving state-of-the-art results on challenging machine learning problems such as describing photos and translating text from one language to another. In this new laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about natural language processing. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what natural language processing is, the promise of deep learning in the field, how to clean and prepare text data for modeling, and how to develop deep learning models for your own natural language processing projects.

MATLAB Deep Learning

Download MATLAB Deep Learning PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484228456
Total Pages : 162 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis MATLAB Deep Learning by : Phil Kim

Download or read book MATLAB Deep Learning written by Phil Kim and published by Apress. This book was released on 2017-06-15 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Download Explainable AI: Interpreting, Explaining and Visualizing Deep Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030289540
Total Pages : 435 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Explainable AI: Interpreting, Explaining and Visualizing Deep Learning by : Wojciech Samek

Download or read book Explainable AI: Interpreting, Explaining and Visualizing Deep Learning written by Wojciech Samek and published by Springer Nature. This book was released on 2019-09-10 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

Deep Learning with JavaScript

Download Deep Learning with JavaScript PDF Online Free

Author :
Publisher : Manning Publications
ISBN 13 : 9781617296178
Total Pages : 350 pages
Book Rating : 4.2/5 (961 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with JavaScript by : Shanqing Cai

Download or read book Deep Learning with JavaScript written by Shanqing Cai and published by Manning Publications. This book was released on 2019-10-07 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning has transformed the fields of computer vision, image processing, and natural language applications. Thanks to TensorFlow.js, now JavaScript developers can build deep learning apps without relying on Python or R. Deep Learning with JavaScript shows developers how they can bring DL technology to the web. Written by the main authors of the TensorFlow library, this new book provides fascinating use cases and in-depth instruction for deep learning apps in JavaScript in your browser or on Node. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Aprendizaje automático y profundo en python

Download Aprendizaje automático y profundo en python PDF Online Free

Author :
Publisher : Ediciones de la U
ISBN 13 : 9587924207
Total Pages : 256 pages
Book Rating : 4.5/5 (879 download)

DOWNLOAD NOW!


Book Synopsis Aprendizaje automático y profundo en python by : Carlos Pineda

Download or read book Aprendizaje automático y profundo en python written by Carlos Pineda and published by Ediciones de la U. This book was released on 2022-10-04 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Es una herramienta de apoyo y de consulta para toda aquella persona interesada en dominar los fundamentos del aprendizaje automático y profundo, a tal punto que le permita aprender lo necesario para desarrollar sus propios modelos de aprendizaje aptos para realizar predicciones con base en los datos, para ello el autor hará uso en la mayoría de los casos de explicaciones teóricas y prácticas, que permitan al lector afianzar sus ideas y fortalecer su aprendizaje. El libro se encuentra dividido en dos partes la primera enfocada en el machine learning y sus diferentes algoritmos de regresión y clasificación, clustering, entre otros. La segunda parte comprende varias técnicas de deep learning donde estudiaremos diferentes arquitecturas de redes neuronales como: redes densamente conectadas, redes convolucionales y redes recurrentes.

STEM Integration in K-12 Education

Download STEM Integration in K-12 Education PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309297990
Total Pages : 143 pages
Book Rating : 4.3/5 (92 download)

DOWNLOAD NOW!


Book Synopsis STEM Integration in K-12 Education by : National Research Council

Download or read book STEM Integration in K-12 Education written by National Research Council and published by National Academies Press. This book was released on 2014-02-28 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.

Natural Language Processing and Text Mining

Download Natural Language Processing and Text Mining PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1846287545
Total Pages : 272 pages
Book Rating : 4.8/5 (462 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing and Text Mining by : Anne Kao

Download or read book Natural Language Processing and Text Mining written by Anne Kao and published by Springer Science & Business Media. This book was released on 2007-03-06 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural Language Processing and Text Mining not only discusses applications of Natural Language Processing techniques to certain Text Mining tasks, but also the converse, the use of Text Mining to assist NLP. It assembles a diverse views from internationally recognized researchers and emphasizes caveats in the attempt to apply Natural Language Processing to text mining. This state-of-the-art survey is a must-have for advanced students, professionals, and researchers.