Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Approximations Of Stochastic Equations Driven By Predictable Processes
Download Approximations Of Stochastic Equations Driven By Predictable Processes full books in PDF, epub, and Kindle. Read online Approximations Of Stochastic Equations Driven By Predictable Processes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Applied Stochastic Differential Equations by : Simo Särkkä
Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Book Synopsis Scientific and Technical Aerospace Reports by :
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introduction to Stochastic Calculus with Applications by : Fima C. Klebaner
Download or read book Introduction to Stochastic Calculus with Applications written by Fima C. Klebaner and published by Imperial College Press. This book was released on 2005 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling.This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, non-linear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.
Book Synopsis Lectures on Random Interfaces by : Tadahisa Funaki
Download or read book Lectures on Random Interfaces written by Tadahisa Funaki and published by Springer. This book was released on 2016-12-27 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interfaces are created to separate two distinct phases in a situation in which phase coexistence occurs. This book discusses randomly fluctuating interfaces in several different settings and from several points of view: discrete/continuum, microscopic/macroscopic, and static/dynamic theories. The following four topics in particular are dealt with in the book.Assuming that the interface is represented as a height function measured from a fixed-reference discretized hyperplane, the system is governed by the Hamiltonian of gradient of the height functions. This is a kind of effective interface model called ∇φ-interface model. The scaling limits are studied for Gaussian (or non-Gaussian) random fields with a pinning effect under a situation in which the rate functional of the corresponding large deviation principle has non-unique minimizers.Young diagrams determine decreasing interfaces, and their dynamics are introduced. The large-scale behavior of such dynamics is studied from the points of view of the hydrodynamic limit and non-equilibrium fluctuation theory. Vershik curves are derived in that limit.A sharp interface limit for the Allen–Cahn equation, that is, a reaction–diffusion equation with bistable reaction term, leads to a mean curvature flow for the interfaces. Its stochastic perturbation, sometimes called a time-dependent Ginzburg–Landau model, stochastic quantization, or dynamic P(φ)-model, is considered. Brief introductions to Brownian motions, martingales, and stochastic integrals are given in an infinite dimensional setting. The regularity property of solutions of stochastic PDEs (SPDEs) of a parabolic type with additive noises is also discussed.The Kardar–Parisi–Zhang (KPZ) equation , which describes a growing interface with fluctuation, recently has attracted much attention. This is an ill-posed SPDE and requires a renormalization. Especially its invariant measures are studied.
Book Synopsis Stochastic Flows and Stochastic Differential Equations by : Hiroshi Kunita
Download or read book Stochastic Flows and Stochastic Differential Equations written by Hiroshi Kunita and published by Cambridge University Press. This book was released on 1990 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to give a systematic treatment of the theory of stochastic differential equations and stochastic flow of diffeomorphisms, and through the former to study the properties of stochastic flows.The classical theory was initiated by K. Itô and since then has been much developed. Professor Kunita's approach here is to regard the stochastic differential equation as a dynamical system driven by a random vector field, including thereby Itô's theory as a special case. The book can be used with advanced courses on probability theory or for self-study.
Book Synopsis Yosida Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications by : T. E. Govindan
Download or read book Yosida Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications written by T. E. Govindan and published by Springer. This book was released on 2016-11-11 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research monograph brings together, for the first time, the varied literature on Yosida approximations of stochastic differential equations (SDEs) in infinite dimensions and their applications into a single cohesive work. The author provides a clear and systematic introduction to the Yosida approximation method and justifies its power by presenting its applications in some practical topics such as stochastic stability and stochastic optimal control. The theory assimilated spans more than 35 years of mathematics, but is developed slowly and methodically in digestible pieces. The book begins with a motivational chapter that introduces the reader to several different models that play recurring roles throughout the book as the theory is unfolded, and invites readers from different disciplines to see immediately that the effort required to work through the theory that follows is worthwhile. From there, the author presents the necessary prerequisite material, and then launches the reader into the main discussion of the monograph, namely, Yosida approximations of SDEs, Yosida approximations of SDEs with Poisson jumps, and their applications. Most of the results considered in the main chapters appear for the first time in a book form, and contain illustrative examples on stochastic partial differential equations. The key steps are included in all proofs, especially the various estimates, which help the reader to get a true feel for the theory of Yosida approximations and their use. This work is intended for researchers and graduate students in mathematics specializing in probability theory and will appeal to numerical analysts, engineers, physicists and practitioners in finance who want to apply the theory of stochastic evolution equations. Since the approach is based mainly in semigroup theory, it is amenable to a wide audience including non-specialists in stochastic processes.
Book Synopsis An Introduction to Stochastic Differential Equations by : Lawrence C. Evans
Download or read book An Introduction to Stochastic Differential Equations written by Lawrence C. Evans and published by American Mathematical Soc.. This book was released on 2012-12-11 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).
Book Synopsis Statistical Theory and Method Abstracts by :
Download or read book Statistical Theory and Method Abstracts written by and published by . This book was released on 2001 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Technical Reports Awareness Circular : TRAC. by :
Download or read book Technical Reports Awareness Circular : TRAC. written by and published by . This book was released on 1988-07 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Strong and Weak Approximation of Semilinear Stochastic Evolution Equations by : Raphael Kruse
Download or read book Strong and Weak Approximation of Semilinear Stochastic Evolution Equations written by Raphael Kruse and published by Springer. This book was released on 2013-11-18 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we analyze the error caused by numerical schemes for the approximation of semilinear stochastic evolution equations (SEEq) in a Hilbert space-valued setting. The numerical schemes considered combine Galerkin finite element methods with Euler-type temporal approximations. Starting from a precise analysis of the spatio-temporal regularity of the mild solution to the SEEq, we derive and prove optimal error estimates of the strong error of convergence in the first part of the book. The second part deals with a new approach to the so-called weak error of convergence, which measures the distance between the law of the numerical solution and the law of the exact solution. This approach is based on Bismut’s integration by parts formula and the Malliavin calculus for infinite dimensional stochastic processes. These techniques are developed and explained in a separate chapter, before the weak convergence is proven for linear SEEq.
Book Synopsis Stochastic Evolution Equations by : Wilfried Grecksch
Download or read book Stochastic Evolution Equations written by Wilfried Grecksch and published by De Gruyter Akademie Forschung. This book was released on 1995 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors give a self-contained exposition of the theory of stochastic evolution equations. Elements of infinite dimensional analysis, martingale theory in Hilbert spaces, stochastic integrals, stochastic convolutions are applied. Existence and uniqueness theorems for stochastic evolution equations in Hilbert spaces in the sense of the semigroup theory, the theory of evolution operators, and monotonous operators in rigged Hilbert spaces are discussed. Relationships between the different concepts are demonstrated. The results are used to concrete stochastic partial differential equations like parabolic and hyperbolic Ito equations and random constitutive equations of elastic viscoplastic materials. Furthermore, stochastic evolution equations in rigged Hilbert spaces are approximated by time discretization methods.
Book Synopsis Stochastic Differential Equations by : Peter H. Baxendale
Download or read book Stochastic Differential Equations written by Peter H. Baxendale and published by World Scientific. This book was released on 2007 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first paper in the volume, Stochastic Evolution Equations by N V Krylov and B L Rozovskii, was originally published in Russian in 1979. After more than a quarter-century, this paper remains a standard reference in the field of stochastic partial differential equations (SPDEs) and continues to attract attention of mathematicians of all generations, because, together with a short but thorough introduction to SPDEs, it presents a number of optimal and essentially non-improvable results about solvability for a large class of both linear and non-linear equations.
Book Synopsis Beyond The Triangle: Brownian Motion, Ito Calculus, And Fokker-planck Equation - Fractional Generalizations by : Sabir Umarov
Download or read book Beyond The Triangle: Brownian Motion, Ito Calculus, And Fokker-planck Equation - Fractional Generalizations written by Sabir Umarov and published by World Scientific. This book was released on 2018-02-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the fundamental relationship between three objects: a stochastic process, stochastic differential equations driven by that process and their associated Fokker-Planck-Kolmogorov equations. This book discusses wide fractional generalizations of this fundamental triple relationship, where the driving process represents a time-changed stochastic process; the Fokker-Planck-Kolmogorov equation involves time-fractional order derivatives and spatial pseudo-differential operators; and the associated stochastic differential equation describes the stochastic behavior of the solution process. It contains recent results obtained in this direction.This book is important since the latest developments in the field, including the role of driving processes and their scaling limits, the forms of corresponding stochastic differential equations, and associated FPK equations, are systematically presented. Examples and important applications to various scientific, engineering, and economics problems make the book attractive for all interested researchers, educators, and graduate students.
Book Synopsis Stochastic Differential Equations by : Bernt Oksendal
Download or read book Stochastic Differential Equations written by Bernt Oksendal and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on a postgraduate course I gave on stochastic differential equations at Edinburgh University in the spring 1982. No previous knowledge about the subject was assumed, but the presen tation is based on some background in measure theory. There are several reasons why one should learn more about stochastic differential equations: They have a wide range of applica tions outside mathematics, there are many fruitful connections to other mathematical disciplines and the subject has a rapidly develop ing life of its own as a fascinating research field with many interesting unanswered questions. Unfortunately most of the literature about stochastic differential equations seems to place so much emphasis on rigor and complete ness that is scares many nonexperts away. These notes are an attempt to approach the subject from the nonexpert point of view: Not knowing anything (except rumours, maybe) about a subject to start with, what would I like to know first of all? My answer would be: 1) In what situations does the subject arise? 2) What are its essential features? 3) What are the applications and the connections to other fields? I would not be so interested in the proof of the most general case, but rather in an easier proof of a special case, which may give just as much of the basic idea in the argument. And I would be willing to believe some basic results without proof (at first stage, anyway) in order to have time for some more basic applications.
Book Synopsis Essentials of Stochastic Processes by : Richard Durrett
Download or read book Essentials of Stochastic Processes written by Richard Durrett and published by Springer. This book was released on 2016-11-07 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Book Synopsis Numerical Methods for Stochastic Partial Differential Equations with White Noise by : Zhongqiang Zhang
Download or read book Numerical Methods for Stochastic Partial Differential Equations with White Noise written by Zhongqiang Zhang and published by Springer. This book was released on 2017-09-01 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.
Book Synopsis Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA by : Elias T. Krainski
Download or read book Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA written by Elias T. Krainski and published by CRC Press. This book was released on 2018-12-07 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.