Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Approximate Hedging In A Local Volatility Model With Proportional Transaction Costs
Download Approximate Hedging In A Local Volatility Model With Proportional Transaction Costs full books in PDF, epub, and Kindle. Read online Approximate Hedging In A Local Volatility Model With Proportional Transaction Costs ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Markets with Transaction Costs by : Yuri Kabanov
Download or read book Markets with Transaction Costs written by Yuri Kabanov and published by Springer Science & Business Media. This book was released on 2009-12-04 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is the first monograph on this highly important subject.
Book Synopsis Stochastic Volatility Modeling by : Lorenzo Bergomi
Download or read book Stochastic Volatility Modeling written by Lorenzo Bergomi and published by CRC Press. This book was released on 2015-12-16 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c
Book Synopsis Optimization-Based Models for Measuring and Hedging Risk in Fixed Income Markets by : Johan Hagenbjörk
Download or read book Optimization-Based Models for Measuring and Hedging Risk in Fixed Income Markets written by Johan Hagenbjörk and published by Linköping University Electronic Press. This book was released on 2019-12-09 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: The global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.
Book Synopsis Mathematical Modeling and Methods of Option Pricing by : Lishang Jiang
Download or read book Mathematical Modeling and Methods of Option Pricing written by Lishang Jiang and published by World Scientific. This book was released on 2005 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the perspective of partial differential equations (PDE), this book introduces the Black-Scholes-Merton's option pricing theory. A unified approach is used to model various types of option pricing as PDE problems, to derive pricing formulas as their solutions, and to design efficient algorithms from the numerical calculation of PDEs.
Book Synopsis Trading Volatility by : Colin Bennett
Download or read book Trading Volatility written by Colin Bennett and published by . This book was released on 2014-08-17 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication aims to fill the void between books providing an introduction to derivatives, and advanced books whose target audience are members of quantitative modelling community. In order to appeal to the widest audience, this publication tries to assume the least amount of prior knowledge. The content quickly moves onto more advanced subjects in order to concentrate on more practical and advanced topics. "A master piece to learn in a nutshell all the essentials about volatility with a practical and lively approach. A must read!" Carole Bernard, Equity Derivatives Specialist at Bloomberg "This book could be seen as the 'volatility bible'!" Markus-Alexander Flesch, Head of Sales & Marketing at Eurex "I highly recommend this book both for those new to the equity derivatives business, and for more advanced readers. The balance between theory and practice is struck At-The-Money" Paul Stephens, Head of Institutional Marketing at CBOE "One of the best resources out there for the volatility community" Paul Britton, CEO and Founder of Capstone Investment Advisors "Colin has managed to convey often complex derivative and volatility concepts with an admirable simplicity, a welcome change from the all-too-dense tomes one usually finds on the subject" Edmund Shing PhD, former Proprietary Trader at BNP Paribas "In a crowded space, Colin has supplied a useful and concise guide" Gary Delany, Director Europe at the Options Industry Council
Book Synopsis Implied Volatility Functions by : Bernard Dumas
Download or read book Implied Volatility Functions written by Bernard Dumas and published by . This book was released on 1996 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Black and Scholes (1973) implied volatilities tend to be systematically related to the option's exercise price and time to expiration. Derman and Kani (1994), Dupire (1994), and Rubinstein (1994) attribute this behavior to the fact that the Black-Scholes constant volatility assumption is violated in practice. These authors hypothesize that the volatility of the underlying asset's return is a deterministic function of the asset price and time and develop the deterministic volatility function (DVF) option valuation model, which has the potential of fitting the observed cross-section of option prices exactly. Using a sample of S & P 500 index options during the period June 1988 through December 1993, we evaluate the economic significance of the implied deterministic volatility function by examining the predictive and hedging performance of the DV option valuation model. We find that its performance is worse than that of an ad hoc Black-Scholes model with variable implied volatilities.
Book Synopsis Stochastic Finance by : Hans Föllmer
Download or read book Stochastic Finance written by Hans Föllmer and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-07-25 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to financial mathematics. It is intended for graduate students in mathematics and for researchers working in academia and industry. The focus on stochastic models in discrete time has two immediate benefits. First, the probabilistic machinery is simpler, and one can discuss right away some of the key problems in the theory of pricing and hedging of financial derivatives. Second, the paradigm of a complete financial market, where all derivatives admit a perfect hedge, becomes the exception rather than the rule. Thus, the need to confront the intrinsic risks arising from market incomleteness appears at a very early stage. The first part of the book contains a study of a simple one-period model, which also serves as a building block for later developments. Topics include the characterization of arbitrage-free markets, preferences on asset profiles, an introduction to equilibrium analysis, and monetary measures of financial risk. In the second part, the idea of dynamic hedging of contingent claims is developed in a multiperiod framework. Topics include martingale measures, pricing formulas for derivatives, American options, superhedging, and hedging strategies with minimal shortfall risk. This fourth, newly revised edition contains more than one hundred exercises. It also includes material on risk measures and the related issue of model uncertainty, in particular a chapter on dynamic risk measures and sections on robust utility maximization and on efficient hedging with convex risk measures. Contents: Part I: Mathematical finance in one period Arbitrage theory Preferences Optimality and equilibrium Monetary measures of risk Part II: Dynamic hedging Dynamic arbitrage theory American contingent claims Superhedging Efficient hedging Hedging under constraints Minimizing the hedging error Dynamic risk measures
Download or read book Mathematical Reviews written by and published by . This book was released on 2008 with total page 866 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Derivatives in Financial Markets with Stochastic Volatility by : Jean-Pierre Fouque
Download or read book Derivatives in Financial Markets with Stochastic Volatility written by Jean-Pierre Fouque and published by Cambridge University Press. This book was released on 2000-07-03 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
Book Synopsis Theory of Financial Risk and Derivative Pricing by : Jean-Philippe Bouchaud
Download or read book Theory of Financial Risk and Derivative Pricing written by Jean-Philippe Bouchaud and published by Cambridge University Press. This book was released on 2003-12-11 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Risk control and derivative pricing have become of major concern to financial institutions, and there is a real need for adequate statistical tools to measure and anticipate the amplitude of the potential moves of the financial markets. Summarising theoretical developments in the field, this 2003 second edition has been substantially expanded. Additional chapters now cover stochastic processes, Monte-Carlo methods, Black-Scholes theory, the theory of the yield curve, and Minority Game. There are discussions on aspects of data analysis, financial products, non-linear correlations, and herding, feedback and agent based models. This book has become a classic reference for graduate students and researchers working in econophysics and mathematical finance, and for quantitative analysts working on risk management, derivative pricing and quantitative trading strategies.
Book Synopsis Quantitative Finance by : Maria Cristina Mariani
Download or read book Quantitative Finance written by Maria Cristina Mariani and published by John Wiley & Sons. This book was released on 2019-11-06 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a multitude of topics relevant to the quantitative finance community by combining the best of the theory with the usefulness of applications Written by accomplished teachers and researchers in the field, this book presents quantitative finance theory through applications to specific practical problems and comes with accompanying coding techniques in R and MATLAB, and some generic pseudo-algorithms to modern finance. It also offers over 300 examples and exercises that are appropriate for the beginning student as well as the practitioner in the field. The Quantitative Finance book is divided into four parts. Part One begins by providing readers with the theoretical backdrop needed from probability and stochastic processes. We also present some useful finance concepts used throughout the book. In part two of the book we present the classical Black-Scholes-Merton model in a uniquely accessible and understandable way. Implied volatility as well as local volatility surfaces are also discussed. Next, solutions to Partial Differential Equations (PDE), wavelets and Fourier transforms are presented. Several methodologies for pricing options namely, tree methods, finite difference method and Monte Carlo simulation methods are also discussed. We conclude this part with a discussion on stochastic differential equations (SDE’s). In the third part of this book, several new and advanced models from current literature such as general Lvy processes, nonlinear PDE's for stochastic volatility models in a transaction fee market, PDE's in a jump-diffusion with stochastic volatility models and factor and copulas models are discussed. In part four of the book, we conclude with a solid presentation of the typical topics in fixed income securities and derivatives. We discuss models for pricing bonds market, marketable securities, credit default swaps (CDS) and securitizations. Classroom-tested over a three-year period with the input of students and experienced practitioners Emphasizes the volatility of financial analyses and interpretations Weaves theory with application throughout the book Utilizes R and MATLAB software programs Presents pseudo-algorithms for readers who do not have access to any particular programming system Supplemented with extensive author-maintained web site that includes helpful teaching hints, data sets, software programs, and additional content Quantitative Finance is an ideal textbook for upper-undergraduate and beginning graduate students in statistics, financial engineering, quantitative finance, and mathematical finance programs. It will also appeal to practitioners in the same fields.
Book Synopsis Option Pricing Models and Volatility Using Excel-VBA by : Fabrice D. Rouah
Download or read book Option Pricing Models and Volatility Using Excel-VBA written by Fabrice D. Rouah and published by John Wiley & Sons. This book was released on 2012-06-15 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive guide offers traders, quants, and students the tools and techniques for using advanced models for pricing options. The accompanying website includes data files, such as options prices, stock prices, or index prices, as well as all of the codes needed to use the option and volatility models described in the book. Praise for Option Pricing Models & Volatility Using Excel-VBA "Excel is already a great pedagogical tool for teaching option valuation and risk management. But the VBA routines in this book elevate Excel to an industrial-strength financial engineering toolbox. I have no doubt that it will become hugely successful as a reference for option traders and risk managers." —Peter Christoffersen, Associate Professor of Finance, Desautels Faculty of Management, McGill University "This book is filled with methodology and techniques on how to implement option pricing and volatility models in VBA. The book takes an in-depth look into how to implement the Heston and Heston and Nandi models and includes an entire chapter on parameter estimation, but this is just the tip of the iceberg. Everyone interested in derivatives should have this book in their personal library." —Espen Gaarder Haug, option trader, philosopher, and author of Derivatives Models on Models "I am impressed. This is an important book because it is the first book to cover the modern generation of option models, including stochastic volatility and GARCH." —Steven L. Heston, Assistant Professor of Finance, R.H. Smith School of Business, University of Maryland
Book Synopsis Fitting Local Volatility: Analytic And Numerical Approaches In Black-scholes And Local Variance Gamma Models by : Andrey Itkin
Download or read book Fitting Local Volatility: Analytic And Numerical Approaches In Black-scholes And Local Variance Gamma Models written by Andrey Itkin and published by World Scientific. This book was released on 2020-01-22 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of local volatility as well as the local volatility model are one of the classical topics of mathematical finance. Although the existing literature is wide, there still exist various problems that have not drawn sufficient attention so far, for example: a) construction of analytical solutions of the Dupire equation for an arbitrary shape of the local volatility function; b) construction of parametric or non-parametric regression of the local volatility surface suitable for fast calibration; c) no-arbitrage interpolation and extrapolation of the local and implied volatility surfaces; d) extension of the local volatility concept beyond the Black-Scholes model, etc. Also, recent progresses in deep learning and artificial neural networks as applied to financial engineering have made it reasonable to look again at various classical problems of mathematical finance including that of building a no-arbitrage local/implied volatility surface and calibrating it to the option market data.This book was written with the purpose of presenting new results previously developed in a series of papers and explaining them consistently, starting from the general concept of Dupire, Derman and Kani and then concentrating on various extensions proposed by the author and his co-authors. This volume collects all the results in one place, and provides some typical examples of the problems that can be efficiently solved using the proposed methods. This also results in a faster calibration of the local and implied volatility surfaces as compared to standard approaches.The methods and solutions presented in this volume are new and recently published, and are accompanied by various additional comments and considerations. Since from the mathematical point of view, the level of details is closer to the applied rather than to the abstract or pure theoretical mathematics, the book could also be recommended to graduate students with majors in computational or quantitative finance, financial engineering or even applied mathematics. In particular, the author used to teach some topics of this book as a part of his special course on computational finance at the Tandon School of Engineering, New York University.
Book Synopsis Optimal Mean Reversion Trading by : Tim Leung (Professor of industrial engineering)
Download or read book Optimal Mean Reversion Trading written by Tim Leung (Professor of industrial engineering) and published by World Scientific. This book was released on 2015-11-26 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Optimal Mean Reversion Trading: Mathematical Analysis and Practical Applications provides a systematic study to the practical problem of optimal trading in the presence of mean-reverting price dynamics. It is self-contained and organized in its presentation, and provides rigorous mathematical analysis as well as computational methods for trading ETFs, options, futures on commodities or volatility indices, and credit risk derivatives. This book offers a unique financial engineering approach that combines novel analytical methodologies and applications to a wide array of real-world examples. It extracts the mathematical problems from various trading approaches and scenarios, but also addresses the practical aspects of trading problems, such as model estimation, risk premium, risk constraints, and transaction costs. The explanations in the book are detailed enough to capture the interest of the curious student or researcher, and complete enough to give the necessary background material for further exploration into the subject and related literature. This book will be a useful tool for anyone interested in financial engineering, particularly algorithmic trading and commodity trading, and would like to understand the mathematically optimal strategies in different market environments."--
Book Synopsis Inspired by Finance by : Yuri Kabanov
Download or read book Inspired by Finance written by Yuri Kabanov and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume is dedicated to Marek Musiela, an eminent scholar and practitioner who is perhaps best-known for his important contributions to problems of derivative pricing, theory of term structure of interest rates, theory of defaultable securities and other topics in modern mathematical finance. It includes 25 research papers by 47 authors, established experts and newcomers alike, that cover the whole range of the "hot" topics in the discipline. The contributed articles not only give a clear picture about what is going on in this rapidly developing field of knowledge but provide methods ready for practical implementation. They also open new prospects for further studies in risk management, portfolio optimization and financial engineering.
Book Synopsis Statistics of Financial Markets by : Jürgen Franke
Download or read book Statistics of Financial Markets written by Jürgen Franke and published by Springer Science & Business Media. This book was released on 2004 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extreme Value Theory (EVT), GARCH MODELS, Hypothesis Testing, Fitting Probability Distributions to Risk Factors and Portfolios.
Book Synopsis High-Frequency Financial Econometrics by : Yacine Aït-Sahalia
Download or read book High-Frequency Financial Econometrics written by Yacine Aït-Sahalia and published by Princeton University Press. This book was released on 2014-07-21 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to the statistical and econometric methods for analyzing high-frequency financial data High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Aït-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Aït-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Aït-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike.