Applied Statistical Decision Theory

Download Applied Statistical Decision Theory PDF Online Free

Author :
Publisher : Wiley-Interscience
ISBN 13 :
Total Pages : 392 pages
Book Rating : 4.:/5 (318 download)

DOWNLOAD NOW!


Book Synopsis Applied Statistical Decision Theory by : Howard Raiffa

Download or read book Applied Statistical Decision Theory written by Howard Raiffa and published by Wiley-Interscience. This book was released on 2000-06-02 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Das definitive Buch zur Anwendung der Bayes-Statistik auf wirtschaftliche Probleme in der Praxis, bei denen es um Entscheidungen mit unsicheren Randbedingungen geht! Der Aktionsplan als Ziel der Analyse soll sowohl den Prioritäten Rechnung tragen, die der Entscheidungsfinder bei den Folgen setzt, als auch unbekannte Faktoren in Form von Wahrscheinlichkeiten enthalten. - Jetzt als preiswerte Paperback-Ausgabe! (08/00)

Applied Statistical Decision Theory

Download Applied Statistical Decision Theory PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 356 pages
Book Rating : 4.:/5 (932 download)

DOWNLOAD NOW!


Book Synopsis Applied Statistical Decision Theory by : Howard Raiffa

Download or read book Applied Statistical Decision Theory written by Howard Raiffa and published by . This book was released on 1966 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Statistical Decision Theory

Download Statistical Decision Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 147571727X
Total Pages : 440 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Statistical Decision Theory by : James Berger

Download or read book Statistical Decision Theory written by James Berger and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision theory is generally taught in one of two very different ways. When of opti taught by theoretical statisticians, it tends to be presented as a set of mathematical techniques mality principles, together with a collection of various statistical procedures. When useful in establishing the optimality taught by applied decision theorists, it is usually a course in Bayesian analysis, showing how this one decision principle can be applied in various practical situations. The original goal I had in writing this book was to find some middle ground. I wanted a book which discussed the more theoretical ideas and techniques of decision theory, but in a manner that was constantly oriented towards solving statistical problems. In particular, it seemed crucial to include a discussion of when and why the various decision prin ciples should be used, and indeed why decision theory is needed at all. This original goal seemed indicated by my philosophical position at the time, which can best be described as basically neutral. I felt that no one approach to decision theory (or statistics) was clearly superior to the others, and so planned a rather low key and impartial presentation of the competing ideas. In the course of writing the book, however, I turned into a rabid Bayesian. There was no single cause for this conversion; just a gradual realization that things seemed to ultimately make sense only when looked at from the Bayesian viewpoint.

Applied Statistical Decision Theory

Download Applied Statistical Decision Theory PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Applied Statistical Decision Theory by : Howard Raiffa

Download or read book Applied Statistical Decision Theory written by Howard Raiffa and published by . This book was released on 1974 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Applied Statistical Decision Theory

Download Applied Statistical Decision Theory PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 047138349X
Total Pages : 388 pages
Book Rating : 4.4/5 (713 download)

DOWNLOAD NOW!


Book Synopsis Applied Statistical Decision Theory by : Howard Raiffa

Download or read book Applied Statistical Decision Theory written by Howard Raiffa and published by John Wiley & Sons. This book was released on 2000-06-02 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Das definitive Buch zur Anwendung der Bayes-Statistik auf wirtschaftliche Probleme in der Praxis, bei denen es um Entscheidungen mit unsicheren Randbedingungen geht! Der Aktionsplan als Ziel der Analyse soll sowohl den Prioritäten Rechnung tragen, die der Entscheidungsfinder bei den Folgen setzt, als auch unbekannte Faktoren in Form von Wahrscheinlichkeiten enthalten. - Jetzt als preiswerte Paperback-Ausgabe! (08/00)

Statistical Decision Theory and Bayesian Analysis

Download Statistical Decision Theory and Bayesian Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 147574286X
Total Pages : 633 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Statistical Decision Theory and Bayesian Analysis by : James O. Berger

Download or read book Statistical Decision Theory and Bayesian Analysis written by James O. Berger and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this new edition the author has added substantial material on Bayesian analysis, including lengthy new sections on such important topics as empirical and hierarchical Bayes analysis, Bayesian calculation, Bayesian communication, and group decision making. With these changes, the book can be used as a self-contained introduction to Bayesian analysis. In addition, much of the decision-theoretic portion of the text was updated, including new sections covering such modern topics as minimax multivariate (Stein) estimation.

Introduction to Statistical Decision Theory

Download Introduction to Statistical Decision Theory PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 875 pages
Book Rating : 4.:/5 (131 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Statistical Decision Theory by : John Winsor Pratt

Download or read book Introduction to Statistical Decision Theory written by John Winsor Pratt and published by . This book was released on 1994 with total page 875 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Frontiers of Statistical Decision Making and Bayesian Analysis

Download Frontiers of Statistical Decision Making and Bayesian Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441969446
Total Pages : 631 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Frontiers of Statistical Decision Making and Bayesian Analysis by : Ming-Hui Chen

Download or read book Frontiers of Statistical Decision Making and Bayesian Analysis written by Ming-Hui Chen and published by Springer Science & Business Media. This book was released on 2010-07-24 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers.

Statistical Decision Problems

Download Statistical Decision Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461484715
Total Pages : 254 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Statistical Decision Problems by : Michael Zabarankin

Download or read book Statistical Decision Problems written by Michael Zabarankin and published by Springer Science & Business Media. This book was released on 2013-12-16 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Decision Problems presents a quick and concise introduction into the theory of risk, deviation and error measures that play a key role in statistical decision problems. It introduces state-of-the-art practical decision making through twenty-one case studies from real-life applications. The case studies cover a broad area of topics and the authors include links with source code and data, a very helpful tool for the reader. In its core, the text demonstrates how to use different factors to formulate statistical decision problems arising in various risk management applications, such as optimal hedging, portfolio optimization, cash flow matching, classification, and more. The presentation is organized into three parts: selected concepts of statistical decision theory, statistical decision problems, and case studies with portfolio safeguard. The text is primarily aimed at practitioners in the areas of risk management, decision making, and statistics. However, the inclusion of a fair bit of mathematical rigor renders this monograph an excellent introduction to the theory of general error, deviation, and risk measures for graduate students. It can be used as supplementary reading for graduate courses including statistical analysis, data mining, stochastic programming, financial engineering, to name a few. The high level of detail may serve useful to applied mathematicians, engineers, and statisticians interested in modeling and managing risk in various applications.

Applied Statistics

Download Applied Statistics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461252466
Total Pages : 737 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Applied Statistics by : Lothar Sachs

Download or read book Applied Statistics written by Lothar Sachs and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: This outline of statistics as an aid in decision making will introduce a reader with limited mathematical background to the most important modern statistical methods. This is a revised and enlarged version, with major extensions and additions, of my "Angewandte Statistik" (5th ed.), which has proved useful for research workers and for consulting statisticians. Applied statistics is at the same time a collection of applicable statistical methods and the application of these methods to measured and/or counted observations. Abstract mathematical concepts and derivations are avoided. Special emphasis is placed on the basic principles of statistical formulation, and on the explanation of the conditions under which a certain formula or a certain test is valid. Preference is given to consideration of the analysis of small sized samples and of distribution-free methods. As a text and reference this book is written for non-mathematicians, in particular for technicians, engineers, executives, students, physicians as well as researchers in other disciplines. It gives any mathematician interested in the practical uses of statistics a general account of the subject. Practical application is the main theme; thus an essential part of the book consists in the 440 fully worked-out numerical examples, some of which are very simple; the 57 exercises with solutions; a number of different compu tational aids; and an extensive bibliography and a very detailed index. In particular, a collection of 232 mathematical and mathematical-statistical tables serves to enable and to simplify the computations.

Decision Theory

Download Decision Theory PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 :
Total Pages : 416 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Decision Theory by : Giovanni Parmigiani

Download or read book Decision Theory written by Giovanni Parmigiani and published by John Wiley & Sons. This book was released on 2009-05-26 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision theory provides a formal framework for making logical choices in the face of uncertainty. Given a set of alternatives, a set of consequences, and a correspondence between those sets, decision theory offers conceptually simple procedures for choice. This book presents an overview of the fundamental concepts and outcomes of rational decision making under uncertainty, highlighting the implications for statistical practice. The authors have developed a series of self contained chapters focusing on bridging the gaps between the different fields that have contributed to rational decision making and presenting ideas in a unified framework and notation while respecting and highlighting the different and sometimes conflicting perspectives. This book: * Provides a rich collection of techniques and procedures. * Discusses the foundational aspects and modern day practice. * Links foundations to practical applications in biostatistics, computer science, engineering and economics. * Presents different perspectives and controversies to encourage readers to form their own opinion of decision making and statistics. Decision Theory is fundamental to all scientific disciplines, including biostatistics, computer science, economics and engineering. Anyone interested in the whys and wherefores of statistical science will find much to enjoy in this book.

Fundamentals of Statistical Exponential Families

Download Fundamentals of Statistical Exponential Families PDF Online Free

Author :
Publisher : IMS
ISBN 13 : 9780940600102
Total Pages : 302 pages
Book Rating : 4.6/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Statistical Exponential Families by : Lawrence D. Brown

Download or read book Fundamentals of Statistical Exponential Families written by Lawrence D. Brown and published by IMS. This book was released on 1986 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Applied Statistics

Download Applied Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119551528
Total Pages : 509 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Applied Statistics by : Dieter Rasch

Download or read book Applied Statistics written by Dieter Rasch and published by John Wiley & Sons. This book was released on 2019-10-07 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Instructs readers on how to use methods of statistics and experimental design with R software Applied statistics covers both the theory and the application of modern statistical and mathematical modelling techniques to applied problems in industry, public services, commerce, and research. It proceeds from a strong theoretical background, but it is practically oriented to develop one's ability to tackle new and non-standard problems confidently. Taking a practical approach to applied statistics, this user-friendly guide teaches readers how to use methods of statistics and experimental design without going deep into the theory. Applied Statistics: Theory and Problem Solutions with R includes chapters that cover R package sampling procedures, analysis of variance, point estimation, and more. It follows on the heels of Rasch and Schott's Mathematical Statistics via that book's theoretical background—taking the lessons learned from there to another level with this book’s addition of instructions on how to employ the methods using R. But there are two important chapters not mentioned in the theoretical back ground as Generalised Linear Models and Spatial Statistics. Offers a practical over theoretical approach to the subject of applied statistics Provides a pre-experimental as well as post-experimental approach to applied statistics Features classroom tested material Applicable to a wide range of people working in experimental design and all empirical sciences Includes 300 different procedures with R and examples with R-programs for the analysis and for determining minimal experimental sizes Applied Statistics: Theory and Problem Solutions with R will appeal to experimenters, statisticians, mathematicians, and all scientists using statistical procedures in the natural sciences, medicine, and psychology amongst others.

Optimal Statistical Decision & Bayesian Inference in Statistical Analysis & Applied Statistical Decision Theory

Download Optimal Statistical Decision & Bayesian Inference in Statistical Analysis & Applied Statistical Decision Theory PDF Online Free

Author :
Publisher : Wiley
ISBN 13 : 9780471687887
Total Pages : 0 pages
Book Rating : 4.6/5 (878 download)

DOWNLOAD NOW!


Book Synopsis Optimal Statistical Decision & Bayesian Inference in Statistical Analysis & Applied Statistical Decision Theory by : Morris H. DeGroot

Download or read book Optimal Statistical Decision & Bayesian Inference in Statistical Analysis & Applied Statistical Decision Theory written by Morris H. DeGroot and published by Wiley. This book was released on 2006-05-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Set that includes three works covering statistical decision theory and analysis The three books within this set are Optimal Statistical Decisions, Bayesian Inference in Statistical Analysis, and Applied Statistical Decision Theory. Optimal Statistical Decisions discusses the theory and methodology of decision-making in the field. The volume stands as a clear introduction to Bayesian statistical decision theory. A second book, Bayesian Inference in Statistical Analysis, examines the application and relevance of Bayes' theorem to problems that occur during scientific investigations, where inferences must be made regarding parameter values about which little is known. Key aspects of the Bayesian approach are discussed, including the choice of prior distribution, the problem of nuisance parameters, and the role of sufficient statistics. Applied Statistical Decision Theory covers the development of analytic techniques in the field of statistical decision theory. This classic book was first published in the 1960s.

Statistical Decision Theory

Download Statistical Decision Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783642404320
Total Pages : 0 pages
Book Rating : 4.4/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Statistical Decision Theory by : Nicholas T. Longford

Download or read book Statistical Decision Theory written by Nicholas T. Longford and published by Springer. This book was released on 2013-10-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a radical rethinking of how elementary inferences should be made in statistics, implementing a comprehensive alternative to hypothesis testing in which the control of the probabilities of the errors is replaced by selecting the course of action (one of the available options) associated with the smallest expected loss. Its strength is that the inferences are responsive to the elicited or declared consequences of the erroneous decisions, and so they can be closely tailored to the client’s perspective, priorities, value judgments and other prior information, together with the uncertainty about them.

Bayesian Data Analysis, Third Edition

Download Bayesian Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439840954
Total Pages : 677 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

An Introduction to Statistical Learning

Download An Introduction to Statistical Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031387473
Total Pages : 617 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Statistical Learning by : Gareth James

Download or read book An Introduction to Statistical Learning written by Gareth James and published by Springer Nature. This book was released on 2023-08-01 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.