Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Applied Categorical Data Analysis
Download Applied Categorical Data Analysis full books in PDF, epub, and Kindle. Read online Applied Categorical Data Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Applied Categorical and Count Data Analysis by : Wan Tang
Download or read book Applied Categorical and Count Data Analysis written by Wan Tang and published by CRC Press. This book was released on 2012-06-04 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed from the authors' graduate-level biostatistics course, Applied Categorical and Count Data Analysis explains how to perform the statistical analysis of discrete data, including categorical and count outcomes. The authors describe the basic ideas underlying each concept, model, and approach to give readers a good grasp of the fundamentals o
Book Synopsis An Introduction to Categorical Data Analysis by : Alan Agresti
Download or read book An Introduction to Categorical Data Analysis written by Alan Agresti and published by John Wiley & Sons. This book was released on 2018-10-11 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.
Book Synopsis Applied Categorical Data Analysis by : Chap T. Le
Download or read book Applied Categorical Data Analysis written by Chap T. Le and published by Wiley-Interscience. This book was released on 1998-09-23 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: The nonstatistician's quick reference to applied categorical data analysis With a succinct, unified approach to applied categorical data analysis and an emphasis on applications, this book is immensely useful to researchers and students in the biomedical disciplines and to anyone concerned with statistical analysis. This self-contained volume provides up-to-date coverage of all major methodologies in this area of applied statistics and acquaints the reader with statistical thinking as expressed through a variety of modern-day topics and techniques. Applied Categorical Data Analysis introduces a number of new research areas, including the Mantel-Haenszel method, Kappa statistics, ordinal risks, odds ratio estimates, goodness-of-fit, and various regression models for categorical data. Chap T. Le, author of Health and Numbers and Applied Survival Analysis, presents his information in a user-friendly format and an accessible style while purposefully keeping the mathematics to a level appropriate for students in applied fields. Well supplemented with helpful graphs and tables, Applied Categorical Data Analysis: * Covers both basic and advanced topics * Employs many real-life examples from biomedicine, epidemiology, and public health * Presents case studies in meticulous detail * Provides end-of-chapter exercise sets and solutions * Incorporates samples of computer programs (most notably in SAS). Applied Categorical Data Analysis is an important resource for graduate students and professionals who need a compact reference and guide to both the fundamentals and applications of the major methods in the field.
Book Synopsis Lectures on Categorical Data Analysis by : Tamás Rudas
Download or read book Lectures on Categorical Data Analysis written by Tamás Rudas and published by Springer. This book was released on 2018-03-30 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a relatively self-contained presentation of the fundamental results in categorical data analysis, which plays a central role among the statistical techniques applied in the social, political and behavioral sciences, as well as in marketing and medical and biological research. The methods applied are mainly aimed at understanding the structure of associations among variables and the effects of other variables on these interactions. A great advantage of studying categorical data analysis is that many concepts in statistics become transparent when discussed in a categorical data context, and, in many places, the book takes this opportunity to comment on general principles and methods in statistics, addressing not only the “how” but also the “why.” Assuming minimal background in calculus, linear algebra, probability theory and statistics, the book is designed to be used in upper-undergraduate and graduate-level courses in the field and in more general statistical methodology courses, as well as a self-study resource for researchers and professionals. The book covers such key issues as: higher order interactions among categorical variables; the use of the delta-method to correctly determine asymptotic standard errors for complex quantities reported in surveys; the fundamentals of the main theories of causal analysis based on observational data; the usefulness of the odds ratio as a measure of association; and a detailed discussion of log-linear models, including graphical models. The book contains over 200 problems, many of which may also be used as starting points for undergraduate research projects. The material can be used by students toward a variety of goals, depending on the degree of theory or application desired.
Book Synopsis Analysis of Categorical Data with R by : Christopher R. Bilder
Download or read book Analysis of Categorical Data with R written by Christopher R. Bilder and published by CRC Press. This book was released on 2024-07-31 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis of Categorical Data with R, Second Edition presents a modern account of categorical data analysis using the R software environment. It covers recent techniques of model building and assessment for binary, multicategory, and count response variables and discusses fundamentals, such as odds ratio and probability estimation. The authors give detailed advice and guidelines on which procedures to use and why to use them. The second edition is a substantial update of the first based on the authors’ experiences of teaching from the book for nearly a decade. The book is organized as before, but with new content throughout, and there are two new substantive topics in the advanced topics chapter—group testing and splines. The computing has been completely updated, with the "emmeans" package now integrated into the book. The examples have also been updated, notably to include new examples based on COVID-19, and there are more than 90 new exercises in the book. The solutions manual and teaching videos have also been updated. Features: Requires no prior experience with R, and offers an introduction to the essential features and functions of R Includes numerous examples from medicine, psychology, sports, ecology, and many other areas Integrates extensive R code and output Graphically demonstrates many of the features and properties of various analysis methods Offers a substantial number of exercises in all chapters, enabling use as a course text or for self-study Supplemented by a website with data sets, code, and teaching videos Analysis of Categorical Data with R, Second Edition is primarily designed for a course on categorical data analysis taught at the advanced undergraduate or graduate level. Such a course could be taught in a statistics or biostatistics department, or within mathematics, psychology, social science, ecology, or another quantitative discipline. It could also be used by a self-learner and would make an ideal reference for a researcher from any discipline where categorical data arise.
Book Synopsis Statistical Methods for Categorical Data Analysis by : Daniel Powers
Download or read book Statistical Methods for Categorical Data Analysis written by Daniel Powers and published by Emerald Group Publishing. This book was released on 2008-11-13 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to methods and models for categorical data analysis and their applications in social science research. Companion website also available, at https://webspace.utexas.edu/dpowers/www/
Book Synopsis Categorical Data Analysis by : Alan Agresti
Download or read book Categorical Data Analysis written by Alan Agresti and published by John Wiley & Sons. This book was released on 2013-04-08 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Second Edition "A must-have book for anyone expecting to do research and/or applications in categorical data analysis." —Statistics in Medicine "It is a total delight reading this book." —Pharmaceutical Research "If you do any analysis of categorical data, this is an essential desktop reference." —Technometrics The use of statistical methods for analyzing categorical data has increased dramatically, particularly in the biomedical, social sciences, and financial industries. Responding to new developments, this book offers a comprehensive treatment of the most important methods for categorical data analysis. Categorical Data Analysis, Third Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial loglinear models for discrete data with normal regression for continuous data. This edition also features: An emphasis on logistic and probit regression methods for binary, ordinal, and nominal responses for independent observations and for clustered data with marginal models and random effects models Two new chapters on alternative methods for binary response data, including smoothing and regularization methods, classification methods such as linear discriminant analysis and classification trees, and cluster analysis New sections introducing the Bayesian approach for methods in that chapter More than 100 analyses of data sets and over 600 exercises Notes at the end of each chapter that provide references to recent research and topics not covered in the text, linked to a bibliography of more than 1,200 sources A supplementary website showing how to use R and SAS; for all examples in the text, with information also about SPSS and Stata and with exercise solutions Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and methodologists, such as biostatisticians and researchers in the social and behavioral sciences, medicine and public health, marketing, education, finance, biological and agricultural sciences, and industrial quality control.
Book Synopsis Discrete Data Analysis with R by : Michael Friendly
Download or read book Discrete Data Analysis with R written by Michael Friendly and published by CRC Press. This book was released on 2015-12-16 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
Book Synopsis Categorical Data Analysis for the Behavioral and Social Sciences by : Razia Azen
Download or read book Categorical Data Analysis for the Behavioral and Social Sciences written by Razia Azen and published by Routledge. This book was released on 2021-05-26 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring a practical approach with numerous examples, the second edition of Categorical Data Analysis for the Behavioral and Social Sciences focuses on helping the reader develop a conceptual understanding of categorical methods, making it a much more accessible text than others on the market. The authors cover common categorical analysis methods and emphasize specific research questions that can be addressed by each analytic procedure, including how to obtain results using SPSS, SAS, and R, so that readers are able to address the research questions they wish to answer. Each chapter begins with a "Look Ahead" section to highlight key content. This is followed by an in-depth focus and explanation of the relationship between the initial research question, the use of software to perform the analyses, and how to interpret the output substantively. Included at the end of each chapter are a range of software examples and questions to test knowledge. New to the second edition: The addition of R syntax for all analyses and an update of SPSS and SAS syntax. The addition of a new chapter on GLMMs. Clarification of concepts and ideas that graduate students found confusing, including revised problems at the end of the chapters. Written for those without an extensive mathematical background, this book is ideal for a graduate course in categorical data analysis taught in departments of psychology, educational psychology, human development and family studies, sociology, public health, and business. Researchers in these disciplines interested in applying these procedures will also appreciate this book’s accessible approach.
Book Synopsis New Developments in Categorical Data Analysis for the Social and Behavioral Sciences by : L. Andries van der Ark
Download or read book New Developments in Categorical Data Analysis for the Social and Behavioral Sciences written by L. Andries van der Ark and published by Psychology Press. This book was released on 2005-01-15 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Categorical data are quantified as either nominal variables--distinguishing different groups, for example, based on socio-economic status, education, and political persuasion--or ordinal variables--distinguishing levels of interest, such as the preferred politician or the preferred type of punishment for committing burglary. This new book is a collection of up-to-date studies on modern categorical data analysis methods, emphasizing their application to relevant and interesting data sets. This volume concentrates on latent class analysis and item response theory. These methods use latent variables to explain the relationships among observed categorical variables. Latent class analysis yields the classification of a group of respondents according to their pattern of scores on the categorical variables. This provides insight into the mechanisms producing the data and allows the estimation of factor structures and regression models conditional on the latent class structure. Item response theory leads to the identification of one or more ordinal or interval scales. In psychological and educational testing these scales are used for individual measurement of abilities and personality traits. The focus of this volume is applied. After a method is explained, the potential of the method for analyzing categorical data is illustrated by means of a real data example to show how it can be used effectively for solving a real data problem. These methods are accessible to researchers not trained explicitly in applied statistics. This volume appeals to researchers and advanced students in the social and behavioral sciences, including social, developmental, organizational, clinical and health psychologists, sociologists, educational and marketing researchers, and political scientists. In addition, it is of interest to those who collect data on categorical variables and are faced with the problem of how to analyze such variables--among themselves or in relation to metric variables.
Book Synopsis Learning Statistics with R by : Daniel Navarro
Download or read book Learning Statistics with R written by Daniel Navarro and published by Lulu.com. This book was released on 2013-01-13 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Book Synopsis Categorical Data Analysis by Example by : Graham J. G. Upton
Download or read book Categorical Data Analysis by Example written by Graham J. G. Upton and published by John Wiley & Sons. This book was released on 2016-11-14 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the key concepts in the analysis of categoricaldata with illustrative examples and accompanying R code This book is aimed at all those who wish to discover how to analyze categorical data without getting immersed in complicated mathematics and without needing to wade through a large amount of prose. It is aimed at researchers with their own data ready to be analyzed and at students who would like an approachable alternative view of the subject. Each new topic in categorical data analysis is illustrated with an example that readers can apply to their own sets of data. In many cases, R code is given and excerpts from the resulting output are presented. In the context of log-linear models for cross-tabulations, two specialties of the house have been included: the use of cobweb diagrams to get visual information concerning significant interactions, and a procedure for detecting outlier category combinations. The R code used for these is available and may be freely adapted. In addition, this book: Uses an example to illustrate each new topic in categorical data Provides a clear explanation of an important subject Is understandable to most readers with minimal statistical and mathematical backgrounds Contains examples that are accompanied by R code and resulting output Includes starred sections that provide more background details for interested readers Categorical Data Analysis by Example is a reference for students in statistics and researchers in other disciplines, especially the social sciences, who use categorical data. This book is also a reference for practitioners in market research, medicine, and other fields.
Book Synopsis Applied Missing Data Analysis by : Craig K. Enders
Download or read book Applied Missing Data Analysis written by Craig K. Enders and published by Guilford Press. This book was released on 2010-04-23 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Walking readers step by step through complex concepts, this book translates missing data techniques into something that applied researchers and graduate students can understand and utilize in their own research. Enders explains the rationale and procedural details for maximum likelihood estimation, Bayesian estimation, multiple imputation, and models for handling missing not at random (MNAR) data. Easy-to-follow examples and small simulated data sets illustrate the techniques and clarify the underlying principles. The companion website includes data files and syntax for the examples in the book as well as up-to-date information on software. The book is accessible to substantive researchers while providing a level of detail that will satisfy quantitative specialists. This book will appeal to researchers and graduate students in psychology, education, management, family studies, public health, sociology, and political science. It will also serve as a supplemental text for doctoral-level courses or seminars in advanced quantitative methods, survey analysis, longitudinal data analysis, and multilevel modeling, and as a primary text for doctoral-level courses or seminars in missing data.
Book Synopsis Categorical Data Analysis With Sas and Spss Applications by : Bayo Lawal
Download or read book Categorical Data Analysis With Sas and Spss Applications written by Bayo Lawal and published by Psychology Press. This book was released on 2003-10-17 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamental aspects of categorical data analysis with an emphasis on how to implement the models used in the book using SAS and SPSS. This is accomplished through the frequent use of examples, with relevant codes and instructions, that are closely related to the problems in the text. Concepts are explained in detail so that students can reproduce similar results on their own. Beginning with chapter two, exercises at the end of each chapter further strengthen students' understanding of the concepts by requiring them to apply some of the ideas expressed in the text in a more advanced capacity. Most of these exercises require intensive use of PC-based statistical software. Numerous tables with results of analyses, including interpretations of the results, further strengthen students' understanding of the material. Categorical Data Analysis With SAS(R) and SPSS Applications features: *detailed programs and outputs of all examples illustrated in the book using SAS(R) 8.02 and SPSS on the book's CD; *detailed coverage of topics often ignored in other books, such as one-way classification (ch. 3), the analysis of doubly classified data (ch. 11), and generalized estimating equations (ch. 12); and *coverage of SAS(R) PROC FREQ, GENMOD, LOGISTIC, PROBIT, and CATMOD, as well as SPSS PROC CROSSTABS, GENLOG, LOGLINEAR, PROBIT, LOGISTIC, NUMREG, and PLUM. This book is ideal for upper-level undergraduate or graduate-level courses on categorical data analysis taught in departments of biostatistics, statistics, epidemiology, psychology, sociology, political science, and education. A prerequisite of one year of calculus and statistics is recommended. The book has been class tested by graduate students in the department of biometry and epidemiology at the Medical University of South Carolina.
Book Synopsis Multivariate Analysis of Categorical Data: Applications by : John van de Geer
Download or read book Multivariate Analysis of Categorical Data: Applications written by John van de Geer and published by SAGE Publications, Incorporated. This book was released on 1993-07-20 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-linear analysis of categorical variables, that is, a variable that can sort objects into a limited number of distinct groups called `categories', is a useful technique for social scientists, particularly those who do survey research. This book introduces the reader to the application of a particular approach to categorical analysis, the GIFI system, or multiple correspondence analysis. Using illustrative examples from a variety of disciplines, van de Geer shows how to perform these techniques using standard computer programs, such as SPSS. The book explains when to use particular programs, what conditions need to be met for effective use of each program, and how to interpret the results based on the use of each of these programs. Detai
Book Synopsis Applied Panel Data Analysis for Economic and Social Surveys by : Hans-Jürgen Andreß
Download or read book Applied Panel Data Analysis for Economic and Social Surveys written by Hans-Jürgen Andreß and published by Springer Science & Business Media. This book was released on 2013-01-24 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many economic and social surveys are designed as panel studies, which provide important data for describing social changes and testing causal relations between social phenomena. This textbook shows how to manage, describe, and model these kinds of data. It presents models for continuous and categorical dependent variables, focusing either on the level of these variables at different points in time or on their change over time. It covers fixed and random effects models, models for change scores and event history models. All statistical methods are explained in an application-centered style using research examples from scholarly journals, which can be replicated by the reader through data provided on the accompanying website. As all models are compared to each other, it provides valuable assistance with choosing the right model in applied research. The textbook is directed at master and doctoral students as well as applied researchers in the social sciences, psychology, business administration and economics. Readers should be familiar with linear regression and have a good understanding of ordinary least squares estimation.
Book Synopsis Regression Models for Categorical, Count, and Related Variables by : John P. Hoffmann
Download or read book Regression Models for Categorical, Count, and Related Variables written by John P. Hoffmann and published by Univ of California Press. This book was released on 2016-08-16 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social science and behavioral science students and researchers are often confronted with data that are categorical, count a phenomenon, or have been collected over time. Sociologists examining the likelihood of interracial marriage, political scientists studying voting behavior, criminologists counting the number of offenses people commit, health scientists studying the number of suicides across neighborhoods, and psychologists modeling mental health treatment success are all interested in outcomes that are not continuous. Instead, they must measure and analyze these events and phenomena in a discrete manner. This book provides an introduction and overview of several statistical models designed for these types of outcomes—all presented with the assumption that the reader has only a good working knowledge of elementary algebra and has taken introductory statistics and linear regression analysis. Numerous examples from the social sciences demonstrate the practical applications of these models. The chapters address logistic and probit models, including those designed for ordinal and nominal variables, regular and zero-inflated Poisson and negative binomial models, event history models, models for longitudinal data, multilevel models, and data reduction techniques such as principal components and factor analysis. Each chapter discusses how to utilize the models and test their assumptions with the statistical software Stata, and also includes exercise sets so readers can practice using these techniques. Appendices show how to estimate the models in SAS, SPSS, and R; provide a review of regression assumptions using simulations; and discuss missing data. A companion website includes downloadable versions of all the data sets used in the book.