Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Analytic Methods In Algebraic Geometry
Download Analytic Methods In Algebraic Geometry full books in PDF, epub, and Kindle. Read online Analytic Methods In Algebraic Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Analytic Methods in Algebraic Geometry by : Jean-Pierre Demailly
Download or read book Analytic Methods in Algebraic Geometry written by Jean-Pierre Demailly and published by . This book was released on 2010 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Algebraic and Analytic Methods in Representation Theory by :
Download or read book Algebraic and Analytic Methods in Representation Theory written by and published by Elsevier. This book was released on 1996-09-27 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a compilation of several works from well-recognized figures in the field of Representation Theory. The presentation of the topic is unique in offering several different points of view, which should makethe book very useful to students and experts alike.Presents several different points of view on key topics in representation theory, from internationally known experts in the field
Book Synopsis Algebraic and Analytic Geometry by : Amnon Neeman
Download or read book Algebraic and Analytic Geometry written by Amnon Neeman and published by Cambridge University Press. This book was released on 2007-09-13 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern introduction to algebraic geometry for undergraduates; uses analytic ideas to access algebraic theory.
Book Synopsis Introduction to Matrix Analytic Methods in Stochastic Modeling by : G. Latouche
Download or read book Introduction to Matrix Analytic Methods in Stochastic Modeling written by G. Latouche and published by SIAM. This book was released on 1999-01-01 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.
Book Synopsis Analytic and Algebraic Geometry by : Jeffery D. McNeal
Download or read book Analytic and Algebraic Geometry written by Jeffery D. McNeal and published by American Mathematical Soc.. This book was released on 2010-01-01 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Analytic and algebraic geometers often study the same geometric structures but bring different methods to bear on them. While this dual approach has been spectacularly successful at solving problems, the language differences between algebra and analysis also represent a difficulty for students and researchers in geometry, particularly complex geometry. The PCMI program was designed to partially address this language gulf, by presenting some of the active developments in algebraic and analytic geometry in a form suitable for students on the 'other side' of the analysis-algebra language divide. One focal point of the summer school was multiplier ideals, a subject of wide current interest in both subjects. The present volume is based on a series of lectures at the PCMI summer school on analytic and algebraic geometry. The series is designed to give a high-level introduction to the advanced techniques behind some recent developments in algebraic and analytic geometry. The lectures contain many illustrative examples, detailed computations, and new perspectives on the topics presented, in order to enhance access of this material to non-specialists."--Publisher's description.
Book Synopsis Analytic Topology by : Gordon Thomas Whyburn
Download or read book Analytic Topology written by Gordon Thomas Whyburn and published by American Mathematical Soc.. This book was released on 1963 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The material here presented represents an elaboration on my Colloquium Lectures delivered before the American Mathematical Society at its September, 1940 meeting at Dartmouth College." - Preface.
Book Synopsis Effective Methods in Algebraic Geometry by : Teo Mora
Download or read book Effective Methods in Algebraic Geometry written by Teo Mora and published by Springer Science & Business Media. This book was released on 1991 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: The symposium "MEGA-90 - Effective Methods in Algebraic Geome try" was held in Castiglioncello (Livorno, Italy) in April 17-211990. The themes - we quote from the "Call for papers" - were the fol lowing: - Effective methods and complexity issues in commutative algebra, pro jective geometry, real geometry, algebraic number theory - Algebraic geometric methods in algebraic computing Contributions in related fields (computational aspects of group theory, differential algebra and geometry, algebraic and differential topology, etc.) were also welcome. The origin and the motivation of such a meeting, that is supposed to be the first of a series, deserves to be explained. The subject - the theory and the practice of computation in alge braic geometry and related domains from the mathematical viewpoin- has been one of the themes of the symposia organized by SIGSAM (the Special Interest Group for Symbolic and Algebraic Manipulation of the Association for Computing Machinery), SAME (Symbolic and Algebraic Manipulation in Europe), and AAECC (the semantics of the name is vary ing; an average meaning is "Applied Algebra and Error Correcting Codes").
Book Synopsis Polyhedral and Algebraic Methods in Computational Geometry by : Michael Joswig
Download or read book Polyhedral and Algebraic Methods in Computational Geometry written by Michael Joswig and published by Springer Science & Business Media. This book was released on 2013-01-04 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.
Book Synopsis Introduction to Complex Analytic Geometry by : Stanislaw Lojasiewicz
Download or read book Introduction to Complex Analytic Geometry written by Stanislaw Lojasiewicz and published by Birkhäuser. This book was released on 2013-03-09 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: facts. An elementary acquaintance with topology, algebra, and analysis (in cluding the notion of a manifold) is sufficient as far as the understanding of this book is concerned. All the necessary properties and theorems have been gathered in the preliminary chapters -either with proofs or with references to standard and elementary textbooks. The first chapter of the book is devoted to a study of the rings Oa of holomorphic functions. The notions of analytic sets and germs are introduced in the second chapter. Its aim is to present elementary properties of these objects, also in connection with ideals of the rings Oa. The case of principal germs (§5) and one-dimensional germs (Puiseux theorem, §6) are treated separately. The main step towards understanding of the local structure of analytic sets is Ruckert's descriptive lemma proved in Chapter III. Among its conse quences is the important Hilbert Nullstellensatz (§4). In the fourth chapter, a study of local structure (normal triples, § 1) is followed by an exposition of the basic properties of analytic sets. The latter includes theorems on the set of singular points, irreducibility, and decom position into irreducible branches (§2). The role played by the ring 0 A of an analytic germ is shown (§4). Then, the Remmert-Stein theorem on re movable singularities is proved (§6). The last part of the chapter deals with analytically constructible sets (§7).
Book Synopsis Higher Geometry by : Frederick Shenstone Woods
Download or read book Higher Geometry written by Frederick Shenstone Woods and published by . This book was released on 1922 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Complex Analysis by : Peter Ebenfelt
Download or read book Complex Analysis written by Peter Ebenfelt and published by Springer Science & Business Media. This book was released on 2011-01-30 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings of a conference on Several Complex Variables, PDE’s, Geometry, and their interactions held in 2008 at the University of Fribourg, Switzerland, in honor of Linda Rothschild.
Book Synopsis Exterior Differential Systems by : Robert L. Bryant
Download or read book Exterior Differential Systems written by Robert L. Bryant and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.
Book Synopsis History of Analytic Geometry by : Carl B. Boyer
Download or read book History of Analytic Geometry written by Carl B. Boyer and published by Courier Corporation. This book was released on 2012-06-28 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study presents the concepts and contributions from before the Alexandrian Age through to Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850. 1956 edition. Analytical bibliography. Index.
Book Synopsis Complex Analytic Sets by : E.M. Chirka
Download or read book Complex Analytic Sets written by E.M. Chirka and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of complex analytic sets is part of the modern geometrical theory of functions of several complex variables. A wide circle of problems in multidimensional complex analysis, related to holomorphic functions and maps, can be reformulated in terms of analytic sets. In these reformulations additional phenomena may emerge, while for the proofs new methods are necessary. (As an example we can mention the boundary properties of conformal maps of domains in the plane, which may be studied by means of the boundary properties of the graphs of such maps.) The theory of complex analytic sets is a relatively young branch of complex analysis. Basically, it was developed to fulfill the need of the theory of functions of several complex variables, but for a long time its development was, so to speak, within the framework of algebraic geometry - by analogy with algebraic sets. And although at present the basic methods of the theory of analytic sets are related with analysis and geometry, the foundations of the theory are expounded in the purely algebraic language of ideals in commutative algebras. In the present book I have tried to eliminate this noncorrespondence and to give a geometric exposition of the foundations of the theory of complex analytic sets, using only classical complex analysis and a minimum of algebra (well-known properties of polynomials of one variable). Moreover, it must of course be taken into consideration that algebraic geometry is one of the most important domains of application of the theory of analytic sets, and hence a lot of attention is given in the present book to algebraic sets.
Book Synopsis Lectures on Formal and Rigid Geometry by : Siegfried Bosch
Download or read book Lectures on Formal and Rigid Geometry written by Siegfried Bosch and published by Springer. This book was released on 2014-08-22 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center "Geometrical Structures in Mathematics".
Book Synopsis Concepts of Modern Mathematics by : Ian Stewart
Download or read book Concepts of Modern Mathematics written by Ian Stewart and published by Courier Corporation. This book was released on 2012-05-23 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
Book Synopsis Algebraic Curves and Riemann Surfaces by : Rick Miranda
Download or read book Algebraic Curves and Riemann Surfaces written by Rick Miranda and published by American Mathematical Soc.. This book was released on 1995 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.