Mathematics for Machine Learning

Download Mathematics for Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108569323
Total Pages : 392 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Mathematical Theories of Machine Learning - Theory and Applications

Download Mathematical Theories of Machine Learning - Theory and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030170764
Total Pages : 138 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Theories of Machine Learning - Theory and Applications by : Bin Shi

Download or read book Mathematical Theories of Machine Learning - Theory and Applications written by Bin Shi and published by Springer. This book was released on 2019-06-12 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies mathematical theories of machine learning. The first part of the book explores the optimality and adaptivity of choosing step sizes of gradient descent for escaping strict saddle points in non-convex optimization problems. In the second part, the authors propose algorithms to find local minima in nonconvex optimization and to obtain global minima in some degree from the Newton Second Law without friction. In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries. In the last part, the authors introduce an novel VAR model with Elastic-Net regularization and its equivalent Bayesian model allowing for both a stable sparsity and a group selection.

An Introduction to Mathematical Machine Theory

Download An Introduction to Mathematical Machine Theory PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 168 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Mathematical Machine Theory by : Seymour Ginsburg

Download or read book An Introduction to Mathematical Machine Theory written by Seymour Ginsburg and published by . This book was released on 1962 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main topics of chapter 1 are (i) equivalence of states and its relation to reduction, and (ii) the problem of subjecting a known machine in an unknown state to a sequence of inputs to determine the finale state by the resultant output sequence. Chapter 2 concerns incomplete sequential machines, in particular, the reduction of superfluous states and general synthesis. Chapter 3 deals with abstract machines. Many examples related to data processing are given. Equivalence of states, equivalence of inputs, and synthesis from the inputs are discussed. In the final chapter tape recognition devices are considered.

An Introduction to Mathematical Logic

Download An Introduction to Mathematical Logic PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486497852
Total Pages : 514 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Mathematical Logic by : Richard E. Hodel

Download or read book An Introduction to Mathematical Logic written by Richard E. Hodel and published by Courier Corporation. This book was released on 2013-01-01 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.

Mathematical Theory of Computation

Download Mathematical Theory of Computation PDF Online Free

Author :
Publisher : Courier Dover Publications
ISBN 13 : 9780486432380
Total Pages : 0 pages
Book Rating : 4.4/5 (323 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Theory of Computation by : Zohar Manna

Download or read book Mathematical Theory of Computation written by Zohar Manna and published by Courier Dover Publications. This book was released on 2003 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the objective of making into a science the art of verifying computer programs (debugging), the author addresses both practical and theoretical aspects of the process. A classic of sequential program verification, this volume has been translated into almost a dozen other languages and is much in demand among graduate and advanced undergraduate computer science students. Subjects include computability (with discussions of finite automata and Turing machines); predicate calculus (basic notions, natural deduction, and the resolution method); verification of programs (both flowchart and algol-like programs); flowchart schemas (basic notions, decision problems, formalization in predicate calculus, and translation programs); and the fixpoint theory of programs (functions and functionals, recursive programs, and verification programs). The treamtent is self-contained, and each chapter concludes with bibliographic remarks, references, and problems.

Introduction to Mathematical Logic

Download Introduction to Mathematical Logic PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461572886
Total Pages : 351 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Mathematical Logic by : Elliot Mendelsohn

Download or read book Introduction to Mathematical Logic written by Elliot Mendelsohn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.

Data Science and Machine Learning

Download Data Science and Machine Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000730778
Total Pages : 538 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Machine Learning by : Dirk P. Kroese

Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Introduction to Mathematical Systems Theory

Download Introduction to Mathematical Systems Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764375493
Total Pages : 169 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Mathematical Systems Theory by : Christiaan Heij

Download or read book Introduction to Mathematical Systems Theory written by Christiaan Heij and published by Springer Science & Business Media. This book was released on 2006-12-18 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the theory of linear systems and control for students in business mathematics, econometrics, computer science, and engineering; the focus is on discrete time systems. The subjects treated are among the central topics of deterministic linear system theory: controllability, observability, realization theory, stability and stabilization by feedback, LQ-optimal control theory. Kalman filtering and LQC-control of stochastic systems are also discussed, as are modeling, time series analysis and model specification, along with model validation.

Understanding Machine Learning

Download Understanding Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107057132
Total Pages : 415 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Introduction to the Theory of Computation

Download Introduction to the Theory of Computation PDF Online Free

Author :
Publisher : Cengage Learning
ISBN 13 : 9781133187790
Total Pages : 0 pages
Book Rating : 4.1/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Introduction to the Theory of Computation by : Michael Sipser

Download or read book Introduction to the Theory of Computation written by Michael Sipser and published by Cengage Learning. This book was released on 2012-06-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now you can clearly present even the most complex computational theory topics to your students with Sipser’s distinct, market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today’s computational theory course, this highly anticipated revision retains the unmatched clarity and thorough coverage that make it a leading text for upper-level undergraduate and introductory graduate students. This edition continues author Michael Sipser’s well-known, approachable style with timely revisions, additional exercises, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. This edition’s refined presentation ensures a trusted accuracy and clarity that make the challenging study of computational theory accessible and intuitive to students while maintaining the subject’s rigor and formalism. Readers gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E’s comprehensive coverage makes this an ideal ongoing reference tool for those studying theoretical computing. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Probabilistic Machine Learning

Download Probabilistic Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262369303
Total Pages : 858 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Machine Learning by : Kevin P. Murphy

Download or read book Probabilistic Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2022-03-01 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.

Probability Inequalities

Download Probability Inequalities PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642052614
Total Pages : 192 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Probability Inequalities by : Zhengyan Lin

Download or read book Probability Inequalities written by Zhengyan Lin and published by Springer Science & Business Media. This book was released on 2011-05-30 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inequality has become an essential tool in many areas of mathematical research, for example in probability and statistics where it is frequently used in the proofs. "Probability Inequalities" covers inequalities related with events, distribution functions, characteristic functions, moments and random variables (elements) and their sum. The book shall serve as a useful tool and reference for scientists in the areas of probability and statistics, and applied mathematics. Prof. Zhengyan Lin is a fellow of the Institute of Mathematical Statistics and currently a professor at Zhejiang University, Hangzhou, China. He is the prize winner of National Natural Science Award of China in 1997. Prof. Zhidong Bai is a fellow of TWAS and the Institute of Mathematical Statistics; he is a professor at the National University of Singapore and Northeast Normal University, Changchun, China.

Foundations of Machine Learning, second edition

Download Foundations of Machine Learning, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262351366
Total Pages : 505 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Machine Learning, second edition by : Mehryar Mohri

Download or read book Foundations of Machine Learning, second edition written by Mehryar Mohri and published by MIT Press. This book was released on 2018-12-25 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262337371
Total Pages : 801 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : Ian Goodfellow

Download or read book Deep Learning written by Ian Goodfellow and published by MIT Press. This book was released on 2016-11-10 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Introduction to Machine Learning

Download Introduction to Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262028182
Total Pages : 639 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Machine Learning by : Ethem Alpaydin

Download or read book Introduction to Machine Learning written by Ethem Alpaydin and published by MIT Press. This book was released on 2014-08-22 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.

A Friendly Introduction to Mathematical Logic

Download A Friendly Introduction to Mathematical Logic PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 1942341075
Total Pages : 382 pages
Book Rating : 4.9/5 (423 download)

DOWNLOAD NOW!


Book Synopsis A Friendly Introduction to Mathematical Logic by : Christopher C. Leary

Download or read book A Friendly Introduction to Mathematical Logic written by Christopher C. Leary and published by Lulu.com. This book was released on 2015 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.

Probability for Machine Learning

Download Probability for Machine Learning PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 319 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Probability for Machine Learning by : Jason Brownlee

Download or read book Probability for Machine Learning written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2019-09-24 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability is the bedrock of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in probability that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of probability to machine learning, Bayesian probability, entropy, density estimation, maximum likelihood, and much more.