Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Algebraic Topology And Related Topics
Download Algebraic Topology And Related Topics full books in PDF, epub, and Kindle. Read online Algebraic Topology And Related Topics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Algebraic Topology and Related Topics by : Mahender Singh
Download or read book Algebraic Topology and Related Topics written by Mahender Singh and published by Springer. This book was released on 2019-02-02 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the latest advances in algebraic topology, from homotopy theory, braid groups, configuration spaces and toric topology, to transformation groups and the adjoining area of knot theory. It consists of well-written original research papers and survey articles by subject experts, most of which were presented at the “7th East Asian Conference on Algebraic Topology” held at the Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India, from December 1 to 6, 2017. Algebraic topology is a broad area of mathematics that has seen enormous developments over the past decade, and as such this book is a valuable resource for graduate students and researchers working in the field.
Book Synopsis Algebraic Topology and Related Topics by : Mahender Singh
Download or read book Algebraic Topology and Related Topics written by Mahender Singh and published by Birkhäuser. This book was released on 2019-02-11 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the latest advances in algebraic topology, from homotopy theory, braid groups, configuration spaces and toric topology, to transformation groups and the adjoining area of knot theory. It consists of well-written original research papers and survey articles by subject experts, most of which were presented at the “7th East Asian Conference on Algebraic Topology” held at the Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India, from December 1 to 6, 2017. Algebraic topology is a broad area of mathematics that has seen enormous developments over the past decade, and as such this book is a valuable resource for graduate students and researchers working in the field.
Book Synopsis Algebraic Topology by : C. R. F. Maunder
Download or read book Algebraic Topology written by C. R. F. Maunder and published by Courier Corporation. This book was released on 1996-01-01 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated, and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. Author C.R.F. Maunder provides examples and exercises; and notes and references at the end of each chapter trace the historical development of the subject.
Book Synopsis A Concise Course in Algebraic Topology by : J. P. May
Download or read book A Concise Course in Algebraic Topology written by J. P. May and published by University of Chicago Press. This book was released on 1999-09 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Book Synopsis A Basic Course in Algebraic Topology by : William S. Massey
Download or read book A Basic Course in Algebraic Topology written by William S. Massey and published by Springer. This book was released on 2019-06-28 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date.
Book Synopsis More Concise Algebraic Topology by : J. P. May
Download or read book More Concise Algebraic Topology written by J. P. May and published by University of Chicago Press. This book was released on 2012-02 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.
Book Synopsis Topics in Topology. (AM-10), Volume 10 by : Solomon Lefschetz
Download or read book Topics in Topology. (AM-10), Volume 10 written by Solomon Lefschetz and published by Princeton University Press. This book was released on 2016-03-02 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solomon Lefschetz pioneered the field of topology--the study of the properties of manysided figures and their ability to deform, twist, and stretch without changing their shape. According to Lefschetz, "If it's just turning the crank, it's algebra, but if it's got an idea in it, it's topology." The very word topology comes from the title of an earlier Lefschetz monograph published in 1920. In Topics in Topology Lefschetz developed a more in-depth introduction to the field, providing authoritative explanations of what would today be considered the basic tools of algebraic topology. Lefschetz moved to the United States from France in 1905 at the age of twenty-one to find employment opportunities not available to him as a Jew in France. He worked at Westinghouse Electric Company in Pittsburgh and there suffered a horrible laboratory accident, losing both hands and forearms. He continued to work for Westinghouse, teaching mathematics, and went on to earn a Ph.D. and to pursue an academic career in mathematics. When he joined the mathematics faculty at Princeton University, he became one of its first Jewish faculty members in any discipline. He was immensely popular, and his memory continues to elicit admiring anecdotes. Editor of Princeton University Press's Annals of Mathematics from 1928 to 1958, Lefschetz built it into a world-class scholarly journal. He published another book, Lectures on Differential Equations, with Princeton in 1946.
Book Synopsis Combinatorial Algebraic Topology by : Dimitry Kozlov
Download or read book Combinatorial Algebraic Topology written by Dimitry Kozlov and published by Springer Science & Business Media. This book was released on 2008-01-08 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.
Book Synopsis Applications of Algebraic Topology by : S. Lefschetz
Download or read book Applications of Algebraic Topology written by S. Lefschetz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.
Book Synopsis Algebraic Topology - Homotopy and Homology by : Robert M. Switzer
Download or read book Algebraic Topology - Homotopy and Homology written by Robert M. Switzer and published by Springer. This book was released on 2017-12-01 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "The author has attempted an ambitious and most commendable project. [...] The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. [...] This book is, all in all, a very admirable work and a valuable addition to the literature." Mathematical Reviews
Book Synopsis Algebraic Topology by : Allen Hatcher
Download or read book Algebraic Topology written by Allen Hatcher and published by Cambridge University Press. This book was released on 2002 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.
Author :Alexander Arhangel’skii Publisher :Springer Science & Business Media ISBN 13 :949121635X Total Pages :794 pages Book Rating :4.4/5 (912 download)
Book Synopsis Topological Groups and Related Structures, An Introduction to Topological Algebra. by : Alexander Arhangel’skii
Download or read book Topological Groups and Related Structures, An Introduction to Topological Algebra. written by Alexander Arhangel’skii and published by Springer Science & Business Media. This book was released on 2008-05-01 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraandtopology,thetwofundamentaldomainsofmathematics,playcomplem- tary roles. Topology studies continuity and convergence and provides a general framework to study the concept of a limit. Much of topology is devoted to handling in?nite sets and in?nity itself; the methods developed are qualitative and, in a certain sense, irrational. - gebra studies all kinds of operations and provides a basis for algorithms and calculations. Very often, the methods here are ?nitistic in nature. Because of this difference in nature, algebra and topology have a strong tendency to develop independently, not in direct contact with each other. However, in applications, in higher level domains of mathematics, such as functional analysis, dynamical systems, representation theory, and others, topology and algebra come in contact most naturally. Many of the most important objects of mathematics represent a blend of algebraic and of topologicalstructures. Topologicalfunctionspacesandlineartopologicalspacesingeneral, topological groups and topological ?elds, transformation groups, topological lattices are objects of this kind. Very often an algebraic structure and a topology come naturally together; this is the case when they are both determined by the nature of the elements of the set considered (a group of transformations is a typical example). The rules that describe the relationship between a topology and an algebraic operation are almost always transparentandnatural—theoperationhastobecontinuous,jointlyorseparately.
Book Synopsis Algebraic Topology by : Tammo tom Dieck
Download or read book Algebraic Topology written by Tammo tom Dieck and published by European Mathematical Society. This book was released on 2008 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written as a textbook on algebraic topology. The first part covers the material for two introductory courses about homotopy and homology. The second part presents more advanced applications and concepts (duality, characteristic classes, homotopy groups of spheres, bordism). The author recommends starting an introductory course with homotopy theory. For this purpose, classical results are presented with new elementary proofs. Alternatively, one could start more traditionally with singular and axiomatic homology. Additional chapters are devoted to the geometry of manifolds, cell complexes and fibre bundles. A special feature is the rich supply of nearly 500 exercises and problems. Several sections include topics which have not appeared before in textbooks as well as simplified proofs for some important results. Prerequisites are standard point set topology (as recalled in the first chapter), elementary algebraic notions (modules, tensor product), and some terminology from category theory. The aim of the book is to introduce advanced undergraduate and graduate (master's) students to basic tools, concepts and results of algebraic topology. Sufficient background material from geometry and algebra is included.
Book Synopsis Basic Concepts of Algebraic Topology by : F.H. Croom
Download or read book Basic Concepts of Algebraic Topology written by F.H. Croom and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is intended as a one semester introduction to algebraic topology at the undergraduate and beginning graduate levels. Basically, it covers simplicial homology theory, the fundamental group, covering spaces, the higher homotopy groups and introductory singular homology theory. The text follows a broad historical outline and uses the proofs of the discoverers of the important theorems when this is consistent with the elementary level of the course. This method of presentation is intended to reduce the abstract nature of algebraic topology to a level that is palatable for the beginning student and to provide motivation and cohesion that are often lacking in abstact treatments. The text emphasizes the geometric approach to algebraic topology and attempts to show the importance of topological concepts by applying them to problems of geometry and analysis. The prerequisites for this course are calculus at the sophomore level, a one semester introduction to the theory of groups, a one semester introduc tion to point-set topology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested that the reader not spend time initially working on the appendices, but rather that he read from the beginning of the text, referring to the appendices as his memory needs refreshing. The text is designed for use by college juniors of normal intelligence and does not require "mathematical maturity" beyond the junior level.
Book Synopsis Topology and Geometry by : Glen E. Bredon
Download or read book Topology and Geometry written by Glen E. Bredon and published by Springer Science & Business Media. This book was released on 1993-06-24 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS
Book Synopsis Algebraic Topology from a Homotopical Viewpoint by : Marcelo Aguilar
Download or read book Algebraic Topology from a Homotopical Viewpoint written by Marcelo Aguilar and published by Springer Science & Business Media. This book was released on 2008-02-02 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors present introductory material in algebraic topology from a novel point of view in using a homotopy-theoretic approach. This carefully written book can be read by any student who knows some topology, providing a useful method to quickly learn this novel homotopy-theoretic point of view of algebraic topology.
Book Synopsis Algebraic Topology of Finite Topological Spaces and Applications by : Jonathan A. Barmak
Download or read book Algebraic Topology of Finite Topological Spaces and Applications written by Jonathan A. Barmak and published by Springer Science & Business Media. This book was released on 2011-08-24 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen's conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology.