Algebraic Theory of Quadratic Numbers

Download Algebraic Theory of Quadratic Numbers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461477174
Total Pages : 206 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Theory of Quadratic Numbers by : Mak Trifković

Download or read book Algebraic Theory of Quadratic Numbers written by Mak Trifković and published by Springer Science & Business Media. This book was released on 2013-09-14 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: By focusing on quadratic numbers, this advanced undergraduate or master’s level textbook on algebraic number theory is accessible even to students who have yet to learn Galois theory. The techniques of elementary arithmetic, ring theory and linear algebra are shown working together to prove important theorems, such as the unique factorization of ideals and the finiteness of the ideal class group. The book concludes with two topics particular to quadratic fields: continued fractions and quadratic forms. The treatment of quadratic forms is somewhat more advanced than usual, with an emphasis on their connection with ideal classes and a discussion of Bhargava cubes. The numerous exercises in the text offer the reader hands-on computational experience with elements and ideals in quadratic number fields. The reader is also asked to fill in the details of proofs and develop extra topics, like the theory of orders. Prerequisites include elementary number theory and a basic familiarity with ring theory.

Quadratic Number Theory

Download Quadratic Number Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470447371
Total Pages : 410 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Quadratic Number Theory by : J. L. Lehman

Download or read book Quadratic Number Theory written by J. L. Lehman and published by American Mathematical Soc.. This book was released on 2019-02-13 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quadratic Number Theory is an introduction to algebraic number theory for readers with a moderate knowledge of elementary number theory and some familiarity with the terminology of abstract algebra. By restricting attention to questions about squares the author achieves the dual goals of making the presentation accessible to undergraduates and reflecting the historical roots of the subject. The representation of integers by quadratic forms is emphasized throughout the text. Lehman introduces an innovative notation for ideals of a quadratic domain that greatly facilitates computation and he uses this to particular effect. The text has an unusual focus on actual computation. This focus, and this notation, serve the author's historical purpose as well; ideals can be seen as number-like objects, as Kummer and Dedekind conceived of them. The notation can be adapted to quadratic forms and provides insight into the connection between quadratic forms and ideals. The computation of class groups and continued fraction representations are featured—the author's notation makes these computations particularly illuminating. Quadratic Number Theory, with its exceptionally clear prose, hundreds of exercises, and historical motivation, would make an excellent textbook for a second undergraduate course in number theory. The clarity of the exposition would also make it a terrific choice for independent reading. It will be exceptionally useful as a fruitful launching pad for undergraduate research projects in algebraic number theory.

The Algebraic and Geometric Theory of Quadratic Forms

Download The Algebraic and Geometric Theory of Quadratic Forms PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821873229
Total Pages : 456 pages
Book Rating : 4.8/5 (732 download)

DOWNLOAD NOW!


Book Synopsis The Algebraic and Geometric Theory of Quadratic Forms by : Richard S. Elman

Download or read book The Algebraic and Geometric Theory of Quadratic Forms written by Richard S. Elman and published by American Mathematical Soc.. This book was released on 2008-07-15 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive study of the algebraic theory of quadratic forms, from classical theory to recent developments, including results and proofs that have never been published. The book is written from the viewpoint of algebraic geometry and includes the theory of quadratic forms over fields of characteristic two, with proofs that are characteristic independent whenever possible. For some results both classical and geometric proofs are given. Part I includes classical algebraic theory of quadratic and bilinear forms and answers many questions that have been raised in the early stages of the development of the theory. Assuming only a basic course in algebraic geometry, Part II presents the necessary additional topics from algebraic geometry including the theory of Chow groups, Chow motives, and Steenrod operations. These topics are used in Part III to develop a modern geometric theory of quadratic forms.

Quadratic Number Fields

Download Quadratic Number Fields PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030786528
Total Pages : 348 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Quadratic Number Fields by : Franz Lemmermeyer

Download or read book Quadratic Number Fields written by Franz Lemmermeyer and published by Springer Nature. This book was released on 2021-09-18 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.

Bilinear Algebra

Download Bilinear Algebra PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9789056990763
Total Pages : 508 pages
Book Rating : 4.9/5 (97 download)

DOWNLOAD NOW!


Book Synopsis Bilinear Algebra by : Kazimierz Szymiczek

Download or read book Bilinear Algebra written by Kazimierz Szymiczek and published by CRC Press. This book was released on 1997-09-05 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Giving an easily accessible elementary introduction to the algebraic theory of quadratic forms, this book covers both Witt's theory and Pfister's theory of quadratic forms. Leading topics include the geometry of bilinear spaces, classification of bilinear spaces up to isometry depending on the ground field, formally real fields, Pfister forms, the Witt ring of an arbitrary field (characteristic two included), prime ideals of the Witt ring, Brauer group of a field, Hasse and Witt invariants of quadratic forms, and equivalence of fields with respect to quadratic forms. Problem sections are included at the end of each chapter. There are two appendices: the first gives a treatment of Hasse and Witt invariants in the language of Steinberg symbols, and the second contains some more advanced problems in 10 groups, including the u-invariant, reduced and stable Witt rings, and Witt equivalence of fields.

A Conversational Introduction to Algebraic Number Theory

Download A Conversational Introduction to Algebraic Number Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470436531
Total Pages : 329 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis A Conversational Introduction to Algebraic Number Theory by : Paul Pollack

Download or read book A Conversational Introduction to Algebraic Number Theory written by Paul Pollack and published by American Mathematical Soc.. This book was released on 2017-08-01 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gauss famously referred to mathematics as the “queen of the sciences” and to number theory as the “queen of mathematics”. This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q . Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three “fundamental theorems”: unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise way of measuring the failure of unique factorization. The book is based on the author's notes from a course delivered at the University of Georgia; pains have been taken to preserve the conversational style of the original lectures.

Number Theory

Download Number Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821820544
Total Pages : 390 pages
Book Rating : 4.8/5 (25 download)

DOWNLOAD NOW!


Book Synopsis Number Theory by : Helmut Koch

Download or read book Number Theory written by Helmut Koch and published by American Mathematical Soc.. This book was released on 2000 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.

Classical Theory of Algebraic Numbers

Download Classical Theory of Algebraic Numbers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387216901
Total Pages : 676 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Classical Theory of Algebraic Numbers by : Paulo Ribenboim

Download or read book Classical Theory of Algebraic Numbers written by Paulo Ribenboim and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.

Algebraic Number Theory

Download Algebraic Number Theory PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 048615436X
Total Pages : 308 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Number Theory by : Edwin Weiss

Download or read book Algebraic Number Theory written by Edwin Weiss and published by Courier Corporation. This book was released on 2012-01-27 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ideal either for classroom use or as exercises for mathematically minded individuals, this text introduces elementary valuation theory, extension of valuations, local and ordinary arithmetic fields, and global, quadratic, and cyclotomic fields.

Problems in Algebraic Number Theory

Download Problems in Algebraic Number Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387269983
Total Pages : 354 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Problems in Algebraic Number Theory by : M. Ram Murty

Download or read book Problems in Algebraic Number Theory written by M. Ram Murty and published by Springer Science & Business Media. This book was released on 2005-09-28 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved

Lectures on the Theory of Algebraic Numbers

Download Lectures on the Theory of Algebraic Numbers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475740921
Total Pages : 251 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Lectures on the Theory of Algebraic Numbers by : E. T. Hecke

Download or read book Lectures on the Theory of Algebraic Numbers written by E. T. Hecke and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: . . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.

Theory of Algebraic Integers

Download Theory of Algebraic Integers PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521565189
Total Pages : 170 pages
Book Rating : 4.5/5 (215 download)

DOWNLOAD NOW!


Book Synopsis Theory of Algebraic Integers by : Richard Dedekind

Download or read book Theory of Algebraic Integers written by Richard Dedekind and published by Cambridge University Press. This book was released on 1996-09-28 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: A translation of a classic work by one of the truly great figures of mathematics.

The Algebraic Theory of Quadratic Forms

Download The Algebraic Theory of Quadratic Forms PDF Online Free

Author :
Publisher : Addison-Wesley
ISBN 13 : 9780805356663
Total Pages : 344 pages
Book Rating : 4.3/5 (566 download)

DOWNLOAD NOW!


Book Synopsis The Algebraic Theory of Quadratic Forms by : Tsit-Yuen Lam

Download or read book The Algebraic Theory of Quadratic Forms written by Tsit-Yuen Lam and published by Addison-Wesley. This book was released on 1980 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt:

The Theory of Algebraic Number Fields

Download The Theory of Algebraic Number Fields PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662035456
Total Pages : 360 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis The Theory of Algebraic Number Fields by : David Hilbert

Download or read book The Theory of Algebraic Number Fields written by David Hilbert and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: A translation of Hilberts "Theorie der algebraischen Zahlkörper" best known as the "Zahlbericht", first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.

Binary Quadratic Forms

Download Binary Quadratic Forms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461245427
Total Pages : 249 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Binary Quadratic Forms by : Duncan A. Buell

Download or read book Binary Quadratic Forms written by Duncan A. Buell and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first coherent exposition of the theory of binary quadratic forms was given by Gauss in the Disqnisitiones Arithmeticae. During the nine teenth century, as the theory of ideals and the rudiments of algebraic number theory were developed, it became clear that this theory of bi nary quadratic forms, so elementary and computationally explicit, was indeed just a special case of a much more elega,nt and abstract theory which, unfortunately, is not computationally explicit. In recent years the original theory has been laid aside. Gauss's proofs, which involved brute force computations that can be done in what is essentially a two dimensional vector space, have been dropped in favor of n-dimensional arguments which prove the general theorems of algebraic number the ory. In consequence, this elegant, yet pleasantly simple, theory has been neglected even as some of its results have become extremely useful in certain computations. I find this neglect unfortunate, because binary quadratic forms have two distinct attractions. First, the subject involves explicit computa tion and many of the computer programs can be quite simple. The use of computers in experimenting with examples is both meaningful and enjoyable; one can actually discover interesting results by com puting examples, noticing patterns in the "data," and then proving that the patterns result from the conclusion of some provable theorem.

Algebraic Number Theory and Fermat's Last Theorem

Download Algebraic Number Theory and Fermat's Last Theorem PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 143986408X
Total Pages : 334 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Number Theory and Fermat's Last Theorem by : Ian Stewart

Download or read book Algebraic Number Theory and Fermat's Last Theorem written by Ian Stewart and published by CRC Press. This book was released on 2001-12-12 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it

Algebraic Theory of Numbers. (AM-1), Volume 1

Download Algebraic Theory of Numbers. (AM-1), Volume 1 PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 140088280X
Total Pages : 240 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Theory of Numbers. (AM-1), Volume 1 by : Hermann Weyl

Download or read book Algebraic Theory of Numbers. (AM-1), Volume 1 written by Hermann Weyl and published by Princeton University Press. This book was released on 2016-04-21 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this, one of the first books to appear in English on the theory of numbers, the eminent mathematician Hermann Weyl explores fundamental concepts in arithmetic. The book begins with the definitions and properties of algebraic fields, which are relied upon throughout. The theory of divisibility is then discussed, from an axiomatic viewpoint, rather than by the use of ideals. There follows an introduction to p-adic numbers and their uses, which are so important in modern number theory, and the book culminates with an extensive examination of algebraic number fields. Weyl's own modest hope, that the work "will be of some use," has more than been fulfilled, for the book's clarity, succinctness, and importance rank it as a masterpiece of mathematical exposition.