Algebraic Theory of Lattices

Download Algebraic Theory of Lattices PDF Online Free

Author :
Publisher : Prentice Hall
ISBN 13 :
Total Pages : 216 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Theory of Lattices by : Peter Crawley

Download or read book Algebraic Theory of Lattices written by Peter Crawley and published by Prentice Hall. This book was released on 1973 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Lattices and Ordered Algebraic Structures

Download Lattices and Ordered Algebraic Structures PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1852339055
Total Pages : 311 pages
Book Rating : 4.8/5 (523 download)

DOWNLOAD NOW!


Book Synopsis Lattices and Ordered Algebraic Structures by : T.S. Blyth

Download or read book Lattices and Ordered Algebraic Structures written by T.S. Blyth and published by Springer Science & Business Media. This book was released on 2005-04-18 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The text can serve as an introduction to fundamentals in the respective areas from a residuated-maps perspective and with an eye on coordinatization. The historical notes that are interspersed are also worth mentioning....The exposition is thorough and all proofs that the reviewer checked were highly polished....Overall, the book is a well-done introduction from a distinct point of view and with exposure to the author’s research expertise." --MATHEMATICAL REVIEWS

Residuated Lattices: An Algebraic Glimpse at Substructural Logics

Download Residuated Lattices: An Algebraic Glimpse at Substructural Logics PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080489648
Total Pages : 532 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Residuated Lattices: An Algebraic Glimpse at Substructural Logics by : Nikolaos Galatos

Download or read book Residuated Lattices: An Algebraic Glimpse at Substructural Logics written by Nikolaos Galatos and published by Elsevier. This book was released on 2007-04-25 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic logic. At the beginning, the second objective is predominant. Thus, in the first few chapters the reader will find a primer of universal algebra for logicians, a crash course in nonclassical logics for algebraists, an introduction to residuated structures, an outline of Gentzen-style calculi as well as some titbits of proof theory - the celebrated Hauptsatz, or cut elimination theorem, among them. These lead naturally to a discussion of interconnections between logic and algebra, where we try to demonstrate how they form two sides of the same coin. We envisage that the initial chapters could be used as a textbook for a graduate course, perhaps entitled Algebra and Substructural Logics. As the book progresses the first objective gains predominance over the second. Although the precise point of equilibrium would be difficult to specify, it is safe to say that we enter the technical part with the discussion of various completions of residuated structures. These include Dedekind-McNeille completions and canonical extensions. Completions are used later in investigating several finiteness properties such as the finite model property, generation of varieties by their finite members, and finite embeddability. The algebraic analysis of cut elimination that follows, also takes recourse to completions. Decidability of logics, equational and quasi-equational theories comes next, where we show how proof theoretical methods like cut elimination are preferable for small logics/theories, but semantic tools like Rabin's theorem work better for big ones. Then we turn to Glivenko's theorem, which says that a formula is an intuitionistic tautology if and only if its double negation is a classical one. We generalise it to the substructural setting, identifying for each substructural logic its Glivenko equivalence class with smallest and largest element. This is also where we begin investigating lattices of logics and varieties, rather than particular examples. We continue in this vein by presenting a number of results concerning minimal varieties/maximal logics. A typical theorem there says that for some given well-known variety its subvariety lattice has precisely such-and-such number of minimal members (where values for such-and-such include, but are not limited to, continuum, countably many and two). In the last two chapters we focus on the lattice of varieties corresponding to logics without contraction. In one we prove a negative result: that there are no nontrivial splittings in that variety. In the other, we prove a positive one: that semisimple varieties coincide with discriminator ones. Within the second, more technical part of the book another transition process may be traced. Namely, we begin with logically inclined technicalities and end with algebraically inclined ones. Here, perhaps, algebraic rendering of Glivenko theorems marks the equilibrium point, at least in the sense that finiteness properties, decidability and Glivenko theorems are of clear interest to logicians, whereas semisimplicity and discriminator varieties are universal algebra par exellence. It is for the reader to judge whether we succeeded in weaving these threads into a seamless fabric.

Introduction to Lattice Algebra

Download Introduction to Lattice Algebra PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000412563
Total Pages : 432 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Lattice Algebra by : Gerhard X. Ritter

Download or read book Introduction to Lattice Algebra written by Gerhard X. Ritter and published by CRC Press. This book was released on 2021-08-23 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lattice theory extends into virtually every branch of mathematics, ranging from measure theory and convex geometry to probability theory and topology. A more recent development has been the rapid escalation of employing lattice theory for various applications outside the domain of pure mathematics. These applications range from electronic communication theory and gate array devices that implement Boolean logic to artificial intelligence and computer science in general. Introduction to Lattice Algebra: With Applications in AI, Pattern Recognition, Image Analysis, and Biomimetic Neural Networks lays emphasis on two subjects, the first being lattice algebra and the second the practical applications of that algebra. This textbook is intended to be used for a special topics course in artificial intelligence with a focus on pattern recognition, multispectral image analysis, and biomimetic artificial neural networks. The book is self-contained and – depending on the student’s major – can be used for a senior undergraduate level or first-year graduate level course. The book is also an ideal self-study guide for researchers and professionals in the above-mentioned disciplines. Features Filled with instructive examples and exercises to help build understanding Suitable for researchers, professionals and students, both in mathematics and computer science Contains numerous exercises.

Introduction to Lattices and Order

Download Introduction to Lattices and Order PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107717523
Total Pages : 316 pages
Book Rating : 4.1/5 (77 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Lattices and Order by : B. A. Davey

Download or read book Introduction to Lattices and Order written by B. A. Davey and published by Cambridge University Press. This book was released on 2002-04-18 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.

Lattices and Ordered Sets

Download Lattices and Ordered Sets PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387789014
Total Pages : 307 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Lattices and Ordered Sets by : Steven Roman

Download or read book Lattices and Ordered Sets written by Steven Roman and published by Springer Science & Business Media. This book was released on 2008-12-15 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.

Algebras, Lattices, Varieties

Download Algebras, Lattices, Varieties PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470467976
Total Pages : 496 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Algebras, Lattices, Varieties by : Ralph S. Freese

Download or read book Algebras, Lattices, Varieties written by Ralph S. Freese and published by American Mathematical Society. This book was released on 2022-10-28 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the second of a three-volume set of books on the theory of algebras, a study that provides a consistent framework for understanding algebraic systems, including groups, rings, modules, semigroups and lattices. Volume I, first published in the 1980s, built the foundations of the theory and is considered to be a classic in this field. The long-awaited volumes II and III are now available. Taken together, the three volumes provide a comprehensive picture of the state of art in general algebra today, and serve as a valuable resource for anyone working in the general theory of algebraic systems or in related fields. The two new volumes are arranged around six themes first introduced in Volume I. Volume II covers the Classification of Varieties, Equational Logic, and Rudiments of Model Theory, and Volume III covers Finite Algebras and their Clones, Abstract Clone Theory, and the Commutator. These topics are presented in six chapters with independent expositions, but are linked by themes and motifs that run through all three volumes.

Orthomodular Lattices

Download Orthomodular Lattices PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400952155
Total Pages : 412 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Orthomodular Lattices by : L. Beran

Download or read book Orthomodular Lattices written by L. Beran and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. Bowever, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programmi ng profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "completely integrable systems", "chaos, synergetics and large-s.cale order", which are almost impossible to fit into the existing classifica tion schemes. They draw upon widely different sections of mathe matics.

Lattice Theory: Special Topics and Applications

Download Lattice Theory: Special Topics and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319064134
Total Pages : 472 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Lattice Theory: Special Topics and Applications by : George Grätzer

Download or read book Lattice Theory: Special Topics and Applications written by George Grätzer and published by Springer. This book was released on 2014-08-27 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This first volume is divided into three parts. Part I. Topology and Lattices includes two chapters by Klaus Keimel, Jimmie Lawson and Ales Pultr, Jiri Sichler. Part II. Special Classes of Finite Lattices comprises four chapters by Gabor Czedli, George Grätzer and Joseph P. S. Kung. Part III. Congruence Lattices of Infinite Lattices and Beyond includes four chapters by Friedrich Wehrung and George Grätzer.

The Algebraic Theory of Semigroups, Volume II

Download The Algebraic Theory of Semigroups, Volume II PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821802720
Total Pages : 370 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis The Algebraic Theory of Semigroups, Volume II by : Alfred Hoblitzelle Clifford

Download or read book The Algebraic Theory of Semigroups, Volume II written by Alfred Hoblitzelle Clifford and published by American Mathematical Soc.. This book was released on 1961 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Lattice Concepts of Module Theory

Download Lattice Concepts of Module Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401595887
Total Pages : 233 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Lattice Concepts of Module Theory by : Grigore Calugareanu

Download or read book Lattice Concepts of Module Theory written by Grigore Calugareanu and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: It became more and more usual, from, say, the 1970s, for each book on Module Theory, to point out and prove some (but in no more than 15 to 20 pages) generalizations to (mostly modular) lattices. This was justified by the nowadays widely accepted perception that the structure of a module over a ring is best understood in terms of the lattice struc ture of its submodule lattice. Citing Louis H. Rowen "this important example (the lattice of all the submodules of a module) is the raison d'etre for the study of lattice theory by ring theorists". Indeed, many module-theoretic results can be proved by using lattice theory alone. The purpose of this book is to collect and present all and only the results of this kind, although for this purpose one must develop some significant lattice theory. The results in this book are of the following categories: the folklore of Lattice Theory (to be found in each Lattice Theory book), module theoretic results generalized in (modular, and possibly compactly gen erated) lattices (to be found in some 6 to 7 books published in the last 20 years), very special module-theoretic results generalized in lattices (e. g. , purity in Chapter 9 and several dimensions in Chapter 13, to be found mostly in [27], respectively, [34] and [18]) and some new con cepts (e. g.

General Lattice Theory

Download General Lattice Theory PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034876335
Total Pages : 392 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis General Lattice Theory by : G. Grätzer

Download or read book General Lattice Theory written by G. Grätzer and published by Birkhäuser. This book was released on 2012-12-06 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the first half of the nineteenth century, George Boole's attempt to formalize propositional logic led to the concept of Boolean algebras. While investigating the axiomatics of Boolean algebras at the end of the nineteenth century, Charles S. Peirce and Ernst Schröder found it useful to introduce the lattice concept. Independently, Richard Dedekind's research on ideals of algebraic numbers led to the same discov ery. In fact, Dedekind also introduced modularity, a weakened form of distri butivity. Although some of the early results of these mathematicians and of Edward V. Huntington are very elegant and far from trivial, they did not attract the attention of the mathematical community. It was Garrett Birkhoff's work in the mid-thirties that started the general develop ment of lattice theory. In a brilliant series of papers he demonstrated the importance of lattice theory and showed that it provides a unifying framework for hitherto unrelated developments in many mathematical disciplines. Birkhoff himself, Valere Glivenko, Karl Menger, John von Neumann, Oystein Ore, and others had developed enough of this new field for Birkhoff to attempt to "seIl" it to the general mathematical community, which he did with astonishing success in the first edition of his Lattice Theory. The further development of the subject matter can best be followed by com paring the first, second, and third editions of his book (G. Birkhoff [1940], [1948], and [1967]).

The Theory of Lattice-Ordered Groups

Download The Theory of Lattice-Ordered Groups PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401583048
Total Pages : 408 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis The Theory of Lattice-Ordered Groups by : V.M. Kopytov

Download or read book The Theory of Lattice-Ordered Groups written by V.M. Kopytov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al gebraic systems, the formalization of the notion of real number led to the definition of ordered groups and ordered fields, the construc tion of non-archimedean geometries brought about the investigation of non-archimedean ordered groups and fields. The theory of partially ordered groups was developed by: R. Dedekind, a. Holder, D. Gilbert, B. Neumann, A. I. Mal'cev, P. Hall, G. Birkhoff. These connections between partial order and group operations allow us to investigate the properties of partially ordered groups. For exam ple, partially ordered groups with interpolation property were intro duced in F. Riesz's fundamental paper [1] as a key to his investigations of partially ordered real vector spaces, and the study of ordered vector spaces with interpolation properties were continued by many functional analysts since. The deepest and most developed part of the theory of partially ordered groups is the theory of lattice-ordered groups. In the 40s, following the publications of the works by G. Birkhoff, H. Nakano and P.

Lattice Theory

Download Lattice Theory PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 048647173X
Total Pages : 242 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Lattice Theory by : George Gratzer

Download or read book Lattice Theory written by George Gratzer and published by Courier Corporation. This book was released on 2009-01-01 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This outstanding text is written in clear language and enhanced with many exercises, diagrams, and proofs. It discusses historical developments and future directions and provides an extensive bibliography and references. 1971 edition.

Lattice Functions and Equations

Download Lattice Functions and Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9781852332662
Total Pages : 452 pages
Book Rating : 4.3/5 (326 download)

DOWNLOAD NOW!


Book Synopsis Lattice Functions and Equations by : Sergiu Rudeanu

Download or read book Lattice Functions and Equations written by Sergiu Rudeanu and published by Springer Science & Business Media. This book was released on 2001-07-30 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the chief aims of this self-contained monograph is to survey recent developments of Boolean functions and equations, as well as lattice functions and equations in more general classes of lattices. Lattice (Boolean) functions are algebraic functions defined over an arbitrary lattice (Boolean algebra), while lattice (Boolean) equations are equations expressed in terms of lattice (Boolean) functions. Special attention is also paid to consistency conditions and reproductive general solutions. Applications refer to graph theory, automata theory, synthesis of circuits, fault detection, databases, marketing and others. Lattice Functions and Equations updates and extends the author's previous monograph - Boolean Functions and Equations.

Abstract Algebra

Download Abstract Algebra PDF Online Free

Author :
Publisher : Orthogonal Publishing L3c
ISBN 13 : 9781944325190
Total Pages : 0 pages
Book Rating : 4.3/5 (251 download)

DOWNLOAD NOW!


Book Synopsis Abstract Algebra by : Thomas Judson

Download or read book Abstract Algebra written by Thomas Judson and published by Orthogonal Publishing L3c. This book was released on 2023-08-11 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.

Algebraic Theory of Quasivarieties

Download Algebraic Theory of Quasivarieties PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0306110636
Total Pages : 314 pages
Book Rating : 4.3/5 (61 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Theory of Quasivarieties by : Viktor A. Gorbunov

Download or read book Algebraic Theory of Quasivarieties written by Viktor A. Gorbunov and published by Springer Science & Business Media. This book was released on 1998-09-30 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of quasivarieties constitutes an independent direction in algebra and mathematical logic and specializes in a fragment of first-order logic-the so-called universal Horn logic. This treatise uniformly presents the principal directions of the theory from an effective algebraic approach developed by the author himself. A revolutionary exposition, this influential text contains a number of results never before published in book form, featuring in-depth commentary for applications of quasivarieties to graphs, convex geometries, and formal languages. Key features include coverage of the Birkhoff-Mal'tsev problem on the structure of lattices of quasivarieties, helpful exercises, and an extensive list of references.