Adversarial Robustness for Machine Learning

Download Adversarial Robustness for Machine Learning PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128242574
Total Pages : 300 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Adversarial Robustness for Machine Learning by : Pin-Yu Chen

Download or read book Adversarial Robustness for Machine Learning written by Pin-Yu Chen and published by Academic Press. This book was released on 2022-08-20 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adversarial Robustness for Machine Learning summarizes the recent progress on this topic and introduces popular algorithms on adversarial attack, defense and veri?cation. Sections cover adversarial attack, veri?cation and defense, mainly focusing on image classi?cation applications which are the standard benchmark considered in the adversarial robustness community. Other sections discuss adversarial examples beyond image classification, other threat models beyond testing time attack, and applications on adversarial robustness. For researchers, this book provides a thorough literature review that summarizes latest progress in the area, which can be a good reference for conducting future research. In addition, the book can also be used as a textbook for graduate courses on adversarial robustness or trustworthy machine learning. While machine learning (ML) algorithms have achieved remarkable performance in many applications, recent studies have demonstrated their lack of robustness against adversarial disturbance. The lack of robustness brings security concerns in ML models for real applications such as self-driving cars, robotics controls and healthcare systems. - Summarizes the whole field of adversarial robustness for Machine learning models - Provides a clearly explained, self-contained reference - Introduces formulations, algorithms and intuitions - Includes applications based on adversarial robustness

Adversarial Machine Learning

Download Adversarial Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015800
Total Pages : 152 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Adversarial Machine Learning by : Yevgeniy Tu

Download or read book Adversarial Machine Learning written by Yevgeniy Tu and published by Springer Nature. This book was released on 2022-05-31 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing abundance of large high-quality datasets, combined with significant technical advances over the last several decades have made machine learning into a major tool employed across a broad array of tasks including vision, language, finance, and security. However, success has been accompanied with important new challenges: many applications of machine learning are adversarial in nature. Some are adversarial because they are safety critical, such as autonomous driving. An adversary in these applications can be a malicious party aimed at causing congestion or accidents, or may even model unusual situations that expose vulnerabilities in the prediction engine. Other applications are adversarial because their task and/or the data they use are. For example, an important class of problems in security involves detection, such as malware, spam, and intrusion detection. The use of machine learning for detecting malicious entities creates an incentive among adversaries to evade detection by changing their behavior or the content of malicius objects they develop. The field of adversarial machine learning has emerged to study vulnerabilities of machine learning approaches in adversarial settings and to develop techniques to make learning robust to adversarial manipulation. This book provides a technical overview of this field. After reviewing machine learning concepts and approaches, as well as common use cases of these in adversarial settings, we present a general categorization of attacks on machine learning. We then address two major categories of attacks and associated defenses: decision-time attacks, in which an adversary changes the nature of instances seen by a learned model at the time of prediction in order to cause errors, and poisoning or training time attacks, in which the actual training dataset is maliciously modified. In our final chapter devoted to technical content, we discuss recent techniques for attacks on deep learning, as well as approaches for improving robustness of deep neural networks. We conclude with a discussion of several important issues in the area of adversarial learning that in our view warrant further research. Given the increasing interest in the area of adversarial machine learning, we hope this book provides readers with the tools necessary to successfully engage in research and practice of machine learning in adversarial settings.

Adversarial Machine Learning

Download Adversarial Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107043468
Total Pages : 341 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Adversarial Machine Learning by : Anthony D. Joseph

Download or read book Adversarial Machine Learning written by Anthony D. Joseph and published by Cambridge University Press. This book was released on 2019-02-21 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study allows readers to get to grips with the conceptual tools and practical techniques for building robust machine learning in the face of adversaries.

Robust Machine Learning Algorithms and Systems for Detection and Mitigation of Adversarial Attacks and Anomalies

Download Robust Machine Learning Algorithms and Systems for Detection and Mitigation of Adversarial Attacks and Anomalies PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309496098
Total Pages : 83 pages
Book Rating : 4.3/5 (94 download)

DOWNLOAD NOW!


Book Synopsis Robust Machine Learning Algorithms and Systems for Detection and Mitigation of Adversarial Attacks and Anomalies by : National Academies of Sciences, Engineering, and Medicine

Download or read book Robust Machine Learning Algorithms and Systems for Detection and Mitigation of Adversarial Attacks and Anomalies written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-08-22 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Intelligence Community Studies Board (ICSB) of the National Academies of Sciences, Engineering, and Medicine convened a workshop on December 11â€"12, 2018, in Berkeley, California, to discuss robust machine learning algorithms and systems for the detection and mitigation of adversarial attacks and anomalies. This publication summarizes the presentations and discussions from the workshop.

Metric Learning

Download Metric Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303101572X
Total Pages : 139 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Metric Learning by : Aurélien Muise

Download or read book Metric Learning written by Aurélien Muise and published by Springer Nature. This book was released on 2022-05-31 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learning literature that covers algorithms, theory and applications for both numerical and structured data. We first introduce relevant definitions and classic metric functions, as well as examples of their use in machine learning and data mining. We then review a wide range of metric learning algorithms, starting with the simple setting of linear distance and similarity learning. We show how one may scale-up these methods to very large amounts of training data. To go beyond the linear case, we discuss methods that learn nonlinear metrics or multiple linear metrics throughout the feature space, and review methods for more complex settings such as multi-task and semi-supervised learning. Although most of the existing work has focused on numerical data, we cover the literature on metric learning for structured data like strings, trees, graphs and time series. In the more technical part of the book, we present some recent statistical frameworks for analyzing the generalization performance in metric learning and derive results for some of the algorithms presented earlier. Finally, we illustrate the relevance of metric learning in real-world problems through a series of successful applications to computer vision, bioinformatics and information retrieval. Table of Contents: Introduction / Metrics / Properties of Metric Learning Algorithms / Linear Metric Learning / Nonlinear and Local Metric Learning / Metric Learning for Special Settings / Metric Learning for Structured Data / Generalization Guarantees for Metric Learning / Applications / Conclusion / Bibliography / Authors' Biographies

Machine Learning Algorithms

Download Machine Learning Algorithms PDF Online Free

Author :
Publisher :
ISBN 13 : 9788303116376
Total Pages : 0 pages
Book Rating : 4.1/5 (163 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Algorithms by : Fuwei Li

Download or read book Machine Learning Algorithms written by Fuwei Li and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates the optimal adversarial attacks against several important signal processing algorithms. Through presenting the optimal attacks in wireless sensor networks, array signal processing, principal component analysis, etc, the authors reveal the robustness of the signal processing algorithms against adversarial attacks. Since data quality is crucial in signal processing, the adversary that can poison the data will be a significant threat to signal processing. Therefore, it is necessary and urgent to investigate the behavior of machine learning algorithms in signal processing under adversarial attacks. The authors in this book mainly examine the adversarial robustness of three commonly used machine learning algorithms in signal processing respectively: linear regression, LASSO-based feature selection, and principal component analysis (PCA). As to linear regression, the authors derive the optimal poisoning data sample and the optimal feature modifications, and also demonstrate the effectiveness of the attack against a wireless distributed learning system. The authors further extend the linear regression to LASSO-based feature selection and study the best strategy to mislead the learning system to select the wrong features. The authors find the optimal attack strategy by solving a bi-level optimization problem and also illustrate how this attack influences array signal processing and weather data analysis. In the end, the authors consider the adversarial robustness of the subspace learning problem. The authors examine the optimal modification strategy under the energy constraints to delude the PCA-based subspace learning algorithm. This book targets researchers working in machine learning, electronic information, and information theory as well as advanced-level students studying these subjects. R&D engineers who are working in machine learning, adversarial machine learning, robust machine learning, and technical consultants working on the security and robustness of machine learning are likely to purchase this book as a reference guide.

Malware Detection

Download Malware Detection PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387445994
Total Pages : 307 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis Malware Detection by : Mihai Christodorescu

Download or read book Malware Detection written by Mihai Christodorescu and published by Springer Science & Business Media. This book was released on 2007-03-06 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book captures the state of the art research in the area of malicious code detection, prevention and mitigation. It contains cutting-edge behavior-based techniques to analyze and detect obfuscated malware. The book analyzes current trends in malware activity online, including botnets and malicious code for profit, and it proposes effective models for detection and prevention of attacks using. Furthermore, the book introduces novel techniques for creating services that protect their own integrity and safety, plus the data they manage.

Computer Vision – ECCV 2020

Download Computer Vision – ECCV 2020 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030585743
Total Pages : 830 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision – ECCV 2020 by : Andrea Vedaldi

Download or read book Computer Vision – ECCV 2020 written by Andrea Vedaldi and published by Springer Nature. This book was released on 2020-11-12 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Strengthening Deep Neural Networks

Download Strengthening Deep Neural Networks PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492044903
Total Pages : 233 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Strengthening Deep Neural Networks by : Katy Warr

Download or read book Strengthening Deep Neural Networks written by Katy Warr and published by "O'Reilly Media, Inc.". This book was released on 2019-07-03 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data. Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you. Delve into DNNs and discover how they could be tricked by adversarial input Investigate methods used to generate adversarial input capable of fooling DNNs Explore real-world scenarios and model the adversarial threat Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data Examine some ways in which AI might become better at mimicking human perception in years to come

Machine Learning and Knowledge Discovery in Databases

Download Machine Learning and Knowledge Discovery in Databases PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030438236
Total Pages : 688 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Peggy Cellier

Download or read book Machine Learning and Knowledge Discovery in Databases written by Peggy Cellier and published by Springer Nature. This book was released on 2020-03-27 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set constitutes the refereed proceedings of the workshops which complemented the 19th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in Würzburg, Germany, in September 2019. The 70 full papers and 46 short papers presented in the two-volume set were carefully reviewed and selected from 200 submissions. The two volumes (CCIS 1167 and CCIS 1168) present the papers that have been accepted for the following workshops: Workshop on Automating Data Science, ADS 2019; Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence and eXplainable Knowledge Discovery in Data Mining, AIMLAI-XKDD 2019; Workshop on Decentralized Machine Learning at the Edge, DMLE 2019; Workshop on Advances in Managing and Mining Large Evolving Graphs, LEG 2019; Workshop on Data and Machine Learning Advances with Multiple Views; Workshop on New Trends in Representation Learning with Knowledge Graphs; Workshop on Data Science for Social Good, SoGood 2019; Workshop on Knowledge Discovery and User Modelling for Smart Cities, UMCIT 2019; Workshop on Data Integration and Applications Workshop, DINA 2019; Workshop on Machine Learning for Cybersecurity, MLCS 2019; Workshop on Sports Analytics: Machine Learning and Data Mining for Sports Analytics, MLSA 2019; Workshop on Categorising Different Types of Online Harassment Languages in Social Media; Workshop on IoT Stream for Data Driven Predictive Maintenance, IoTStream 2019; Workshop on Machine Learning and Music, MML 2019; Workshop on Large-Scale Biomedical Semantic Indexing and Question Answering, BioASQ 2019. The chapter "Supervised Human-guided Data Exploration" is published open access under a Creative Commons Attribution 4.0 International license (CC BY).

Shape, Contour and Grouping in Computer Vision

Download Shape, Contour and Grouping in Computer Vision PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540667229
Total Pages : 340 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Shape, Contour and Grouping in Computer Vision by : David A. Forsyth

Download or read book Shape, Contour and Grouping in Computer Vision written by David A. Forsyth and published by Springer Science & Business Media. This book was released on 1999-11-03 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision has been successful in several important applications recently. Vision techniques can now be used to build very good models of buildings from pictures quickly and easily, to overlay operation planning data on a neuros- geon’s view of a patient, and to recognise some of the gestures a user makes to a computer. Object recognition remains a very di cult problem, however. The key questions to understand in recognition seem to be: (1) how objects should be represented and (2) how to manage the line of reasoning that stretches from image data to object identity. An important part of the process of recognition { perhaps, almost all of it { involves assembling bits of image information into helpful groups. There is a wide variety of possible criteria by which these groups could be established { a set of edge points that has a symmetry could be one useful group; others might be a collection of pixels shaded in a particular way, or a set of pixels with coherent colour or texture. Discussing this process of grouping requires a detailed understanding of the relationship between what is seen in the image and what is actually out there in the world.

Game Theory and Machine Learning for Cyber Security

Download Game Theory and Machine Learning for Cyber Security PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119723949
Total Pages : 546 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Game Theory and Machine Learning for Cyber Security by : Charles A. Kamhoua

Download or read book Game Theory and Machine Learning for Cyber Security written by Charles A. Kamhoua and published by John Wiley & Sons. This book was released on 2021-09-08 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: GAME THEORY AND MACHINE LEARNING FOR CYBER SECURITY Move beyond the foundations of machine learning and game theory in cyber security to the latest research in this cutting-edge field In Game Theory and Machine Learning for Cyber Security, a team of expert security researchers delivers a collection of central research contributions from both machine learning and game theory applicable to cybersecurity. The distinguished editors have included resources that address open research questions in game theory and machine learning applied to cyber security systems and examine the strengths and limitations of current game theoretic models for cyber security. Readers will explore the vulnerabilities of traditional machine learning algorithms and how they can be mitigated in an adversarial machine learning approach. The book offers a comprehensive suite of solutions to a broad range of technical issues in applying game theory and machine learning to solve cyber security challenges. Beginning with an introduction to foundational concepts in game theory, machine learning, cyber security, and cyber deception, the editors provide readers with resources that discuss the latest in hypergames, behavioral game theory, adversarial machine learning, generative adversarial networks, and multi-agent reinforcement learning. Readers will also enjoy: A thorough introduction to game theory for cyber deception, including scalable algorithms for identifying stealthy attackers in a game theoretic framework, honeypot allocation over attack graphs, and behavioral games for cyber deception An exploration of game theory for cyber security, including actionable game-theoretic adversarial intervention detection against advanced persistent threats Practical discussions of adversarial machine learning for cyber security, including adversarial machine learning in 5G security and machine learning-driven fault injection in cyber-physical systems In-depth examinations of generative models for cyber security Perfect for researchers, students, and experts in the fields of computer science and engineering, Game Theory and Machine Learning for Cyber Security is also an indispensable resource for industry professionals, military personnel, researchers, faculty, and students with an interest in cyber security.

Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices

Download Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030794571
Total Pages : 640 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices by : Hamido Fujita

Download or read book Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices written by Hamido Fujita and published by Springer Nature. This book was released on 2021-07-19 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set of LNAI 12798 and 12799 constitutes the thoroughly refereed proceedings of the 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2021, held virtually and in Kuala Lumpur, Malaysia, in July 2021. The 87 full papers and 19 short papers presented were carefully reviewed and selected from 145 submissions. The IEA/AIE 2021 conference will continue the tradition of emphasizing on applications of applied intelligent systems to solve real-life problems in all areas. These areas include the following: Part I, Artificial Intelligence Practices: Knowledge discovery and pattern mining; artificial intelligence and machine learning; sematic, topology, and ontology models; medical and health-related applications; graphic and social network analysis; signal and bioinformatics processing; evolutionary computation; attack security; natural language and text processing; fuzzy inference and theory; and sensor and communication networks Part II, From Theory to Practice: Prediction and recommendation; data management, clustering and classification; robotics; knowledge based and decision support systems; multimedia applications; innovative applications of intelligent systems; CPS and industrial applications; defect, anomaly and intrusion detection; financial and supply chain applications; Bayesian networks; BigData and time series processing; and information retrieval and relation extraction

Implications of Artificial Intelligence for Cybersecurity

Download Implications of Artificial Intelligence for Cybersecurity PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309494508
Total Pages : 99 pages
Book Rating : 4.3/5 (94 download)

DOWNLOAD NOW!


Book Synopsis Implications of Artificial Intelligence for Cybersecurity by : National Academies of Sciences, Engineering, and Medicine

Download or read book Implications of Artificial Intelligence for Cybersecurity written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2020-01-27 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, interest and progress in the area of artificial intelligence (AI) and machine learning (ML) have boomed, with new applications vigorously pursued across many sectors. At the same time, the computing and communications technologies on which we have come to rely present serious security concerns: cyberattacks have escalated in number, frequency, and impact, drawing increased attention to the vulnerabilities of cyber systems and the need to increase their security. In the face of this changing landscape, there is significant concern and interest among policymakers, security practitioners, technologists, researchers, and the public about the potential implications of AI and ML for cybersecurity. The National Academies of Sciences, Engineering, and Medicine convened a workshop on March 12-13, 2019 to discuss and explore these concerns. This publication summarizes the presentations and discussions from the workshop.

Obfuscation

Download Obfuscation PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262029731
Total Pages : 137 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Obfuscation by : Finn Brunton

Download or read book Obfuscation written by Finn Brunton and published by MIT Press. This book was released on 2015-09-04 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: How we can evade, protest, and sabotage today's pervasive digital surveillance by deploying more data, not less—and why we should. With Obfuscation, Finn Brunton and Helen Nissenbaum mean to start a revolution. They are calling us not to the barricades but to our computers, offering us ways to fight today's pervasive digital surveillance—the collection of our data by governments, corporations, advertisers, and hackers. To the toolkit of privacy protecting techniques and projects, they propose adding obfuscation: the deliberate use of ambiguous, confusing, or misleading information to interfere with surveillance and data collection projects. Brunton and Nissenbaum provide tools and a rationale for evasion, noncompliance, refusal, even sabotage—especially for average users, those of us not in a position to opt out or exert control over data about ourselves. Obfuscation will teach users to push back, software developers to keep their user data safe, and policy makers to gather data without misusing it. Brunton and Nissenbaum present a guide to the forms and formats that obfuscation has taken and explain how to craft its implementation to suit the goal and the adversary. They describe a series of historical and contemporary examples, including radar chaff deployed by World War II pilots, Twitter bots that hobbled the social media strategy of popular protest movements, and software that can camouflage users' search queries and stymie online advertising. They go on to consider obfuscation in more general terms, discussing why obfuscation is necessary, whether it is justified, how it works, and how it can be integrated with other privacy practices and technologies.

Artificial Intelligence and Machine Learning

Download Artificial Intelligence and Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030651541
Total Pages : 211 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence and Machine Learning by : Bart Bogaerts

Download or read book Artificial Intelligence and Machine Learning written by Bart Bogaerts and published by Springer Nature. This book was released on 2021-01-04 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a selection of the best papers of the 31st Benelux Conference on Artificial Intelligence, BNAIC 2019, and 28th Belgian Dutch Machine Learning Conference, BENELEARN 2019, held in Brussels, Belgium in November 2019. The 11 papers presented in this volume were carefully reviewed and selected from 50 regular submissions. They address various aspects of artificial intelligence such as natural language processing, agent technology, game theory, problem solving, machine learning, human-agent interaction, AI and education, and data analysis.

Adversarial Machine Learning

Download Adversarial Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030997723
Total Pages : 316 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Adversarial Machine Learning by : Aneesh Sreevallabh Chivukula

Download or read book Adversarial Machine Learning written by Aneesh Sreevallabh Chivukula and published by Springer Nature. This book was released on 2023-03-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.