Advances in GLIM and Statistical Modelling

Download Advances in GLIM and Statistical Modelling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461229529
Total Pages : 238 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Advances in GLIM and Statistical Modelling by : Ludwig Fahrmeir

Download or read book Advances in GLIM and Statistical Modelling written by Ludwig Fahrmeir and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the published Proceedings of the joint meeting of GUM92 and the 7th International Workshop on Statistical Modelling, held in Munich, Germany from 13 to 17 July 1992. The meeting aimed to bring together researchers interested in the development and applications of generalized linear modelling in GUM and those interested in statistical modelling in its widest sense. This joint meeting built upon the success of previous workshops and GUM conferences. Previous GUM conferences were held in London and Lancaster, and a joint GUM Conference/4th Modelling Workshop was held in Trento. (The Proceedings of previous GUM conferences/Statistical Modelling Workshops are available as numbers 14 , 32 and 57 of the Springer Verlag series of Lecture Notes in Statistics). Workshops have been organized in Innsbruck, Perugia, Vienna, Toulouse and Utrecht. (Proceedings of the Toulouse Workshop appear as numbers 3 and 4 of volume 13 of the journal Computational Statistics and Data Analysis). Much statistical modelling is carried out using GUM, as is apparent from many of the papers in these Proceedings. Thus the Programme Committee were also keen on encouraging papers which addressed problems which are not only of practical importance but which are also relevant to GUM or other software development. The Programme Committee requested both theoretical and applied papers. Thus there are papers in a wide range of practical areas, such as ecology, breast cancer remission and diabetes mortality, banking and insurance, quality control, social mobility, organizational behaviour.

Statistical Modelling in GLIM

Download Statistical Modelling in GLIM PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 9780198522034
Total Pages : 390 pages
Book Rating : 4.5/5 (22 download)

DOWNLOAD NOW!


Book Synopsis Statistical Modelling in GLIM by : Murray A. Aitkin

Download or read book Statistical Modelling in GLIM written by Murray A. Aitkin and published by Oxford University Press. This book was released on 1989 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of data by statistical modelling is becoming increasingly important. This book presents both the theory of statistical modelling with generalized linear models and the application of the theory to practical problems using the widely available package GLIM. The authors have takenpains to integrate the theory with many practical examples which illustrate the value of interactive statistical modelling. Throughout the book theoretical issues of formulating and simplifying models are discussed, as are problems of validating the models by the detection of outliers and influential observations. The book arises from short courses given at the University of Lancaster's Centre for Applied Statistics, with an emphasis on practical programming in GLIM and numerous examples. A wide range of case studies is provided, using the normal, binomial, Poisson, multinomial, gamma, exponential andWeibull distributions. A feature of the book is a detailed discussion of survival analysis. Statisticians working in a wide range of fields, including biomedical and social sciences, will find this book an invaluable desktop companion to aid their statistical modelling. It will also provide a text for students meeting the ideas of statistical modelling for the first time.

Statistical Modelling

Download Statistical Modelling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461207894
Total Pages : 328 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Statistical Modelling by : Gilg U.H. Seeber

Download or read book Statistical Modelling written by Gilg U.H. Seeber and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the published proceedings of the lOth International Workshop on Statistical Modelling, to be held in Innsbruck, Austria from 10 to 14 July, 1995. This workshop marks an important anniversary. The inaugural workshop in this series also took place in Innsbruck in 1986, and brought together a small but enthusiastic group of thirty European statisticians interested in statistical modelling. The workshop arose out of two G LIM conferences in the U. K. in London (1982) and Lancaster (1985), and from a num ber of short courses organised by Murray Aitkin and held at Lancaster in the early 1980s, which attracted many European statisticians interested in Generalised Linear Modelling. The inaugural workshop in Innsbruck con centrated on GLMs and was characterised by a number of features - a friendly and supportive academic atmosphere, tutorial sessions and invited speakers presenting new developments in statistical modelling, and a very well organised social programme. The academic programme allowed plenty of time for presentation and for discussion, and made available copies of all papers beforehand. Over the intervening years, the workshop has grown substantially, and now regularly attracts over 150 participants. The scope of the workshop is now much broader, reflecting the growth in the subject of statistical modelling over ten years. The elements ofthe first workshop, however, are still present, and participants always find the meetings relevant and stimulating.

Monte Carlo and Quasi-Monte Carlo Methods 1996

Download Monte Carlo and Quasi-Monte Carlo Methods 1996 PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461216907
Total Pages : 463 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Monte Carlo and Quasi-Monte Carlo Methods 1996 by : Harald Niederreiter

Download or read book Monte Carlo and Quasi-Monte Carlo Methods 1996 written by Harald Niederreiter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are numerical methods based on random sampling and quasi-Monte Carlo methods are their deterministic versions. This volume contains the refereed proceedings of the Second International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing which was held at the University of Salzburg (Austria) from July 9--12, 1996. The conference was a forum for recent progress in the theory and the applications of these methods. The topics covered in this volume range from theoretical issues in Monte Carlo and simulation methods, low-discrepancy point sets and sequences, lattice rules, and pseudorandom number generation to applications such as numerical integration, numerical linear algebra, integral equations, binary search, global optimization, computational physics, mathematical finance, and computer graphics. These proceedings will be of interest to graduate students and researchers in Monte Carlo and quasi-Monte Carlo methods, to numerical analysts, and to practitioners of simulation methods.

Selecting Models from Data

Download Selecting Models from Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461226600
Total Pages : 475 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Selecting Models from Data by : P. Cheeseman

Download or read book Selecting Models from Data written by P. Cheeseman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a selection of papers presented at the Fourth International Workshop on Artificial Intelligence and Statistics held in January 1993. These biennial workshops have succeeded in bringing together researchers from Artificial Intelligence and from Statistics to discuss problems of mutual interest. The exchange has broadened research in both fields and has strongly encour aged interdisciplinary work. The theme ofthe 1993 AI and Statistics workshop was: "Selecting Models from Data". The papers in this volume attest to the diversity of approaches to model selection and to the ubiquity of the problem. Both statistics and artificial intelligence have independently developed approaches to model selection and the corresponding algorithms to implement them. But as these papers make clear, there is a high degree of overlap between the different approaches. In particular, there is agreement that the fundamental problem is the avoidence of "overfitting"-Le., where a model fits the given data very closely, but is a poor predictor for new data; in other words, the model has partly fitted the "noise" in the original data.

Modelling Longitudinal and Spatially Correlated Data

Download Modelling Longitudinal and Spatially Correlated Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461206995
Total Pages : 404 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Modelling Longitudinal and Spatially Correlated Data by : Timothy G. Gregoire

Download or read book Modelling Longitudinal and Spatially Correlated Data written by Timothy G. Gregoire and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Correlated data arise in numerous contexts across a wide spectrum of subject-matter disciplines. Modeling such data present special challenges and opportunities that have received increasing scrutiny by the statistical community in recent years. In October 1996 a group of 210 statisticians and other scientists assembled on the small island of Nantucket, U. S. A. , to present and discuss new developments relating to Modelling Longitudinal and Spatially Correlated Data: Methods, Applications, and Future Direc tions. Its purpose was to provide a cross-disciplinary forum to explore the commonalities and meaningful differences in the source and treatment of such data. This volume is a compilation of some of the important invited and volunteered presentations made during that conference. The three days and evenings of oral and displayed presentations were arranged into six broad thematic areas. The session themes, the invited speakers and the topics they addressed were as follows: • Generalized Linear Models: Peter McCullagh-"Residual Likelihood in Linear and Generalized Linear Models" • Longitudinal Data Analysis: Nan Laird-"Using the General Linear Mixed Model to Analyze Unbalanced Repeated Measures and Longi tudinal Data" • Spatio---Temporal Processes: David R. Brillinger-"Statistical Analy sis of the Tracks of Moving Particles" • Spatial Data Analysis: Noel A. Cressie-"Statistical Models for Lat tice Data" • Modelling Messy Data: Raymond J. Carroll-"Some Results on Gen eralized Linear Mixed Models with Measurement Error in Covariates" • Future Directions: Peter J.

Bilinear Forms and Zonal Polynomials

Download Bilinear Forms and Zonal Polynomials PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461242428
Total Pages : 385 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Bilinear Forms and Zonal Polynomials by : Arak M. Mathai

Download or read book Bilinear Forms and Zonal Polynomials written by Arak M. Mathai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with bilinear forms in real random vectors and their generalizations as well as zonal polynomials and their applications in handling generalized quadratic and bilinear forms. The book is mostly self-contained. It starts from basic principles and brings the readers to the current research level in these areas. It is developed with detailed proofs and illustrative examples for easy readability and self-study. Several exercises are proposed at the end of the chapters. The complicated topic of zonal polynomials is explained in detail in this book. The book concentrates on the theoretical developments in all the topics covered. Some applications are pointed out but no detailed application to any particular field is attempted. This book can be used as a textbook for a one-semester graduate course on quadratic and bilinear forms and/or on zonal polynomials. It is hoped that this book will be a valuable reference source for graduate students and research workers in the areas of mathematical statistics, quadratic and bilinear forms and their generalizations, zonal polynomials, invariant polynomials and related topics, and will benefit statisticians, mathematicians and other theoretical and applied scientists who use any of the above topics in their areas. Chapter 1 gives the preliminaries needed in later chapters, including some Jacobians of matrix transformations. Chapter 2 is devoted to bilinear forms in Gaussian real ran dom vectors, their properties, and techniques specially developed to deal with bilinear forms where the standard methods for handling quadratic forms become complicated.

Discretization and MCMC Convergence Assessment

Download Discretization and MCMC Convergence Assessment PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461217164
Total Pages : 201 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Discretization and MCMC Convergence Assessment by : Christian P. Robert

Download or read book Discretization and MCMC Convergence Assessment written by Christian P. Robert and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: The exponential increase in the use of MCMC methods and the corre sponding applications in domains of even higher complexity have caused a growing concern about the available convergence assessment methods and the realization that some of these methods were not reliable enough for all-purpose analyses. Some researchers have mainly focussed on the con vergence to stationarity and the estimation of rates of convergence, in rela tion with the eigenvalues of the transition kernel. This monograph adopts a different perspective by developing (supposedly) practical devices to assess the mixing behaviour of the chain under study and, more particularly, it proposes methods based on finite (state space) Markov chains which are obtained either through a discretization of the original Markov chain or through a duality principle relating a continuous state space Markov chain to another finite Markov chain, as in missing data or latent variable models. The motivation for the choice of finite state spaces is that, although the resulting control is cruder, in the sense that it can often monitor con vergence for the discretized version alone, it is also much stricter than alternative methods, since the tools available for finite Markov chains are universal and the resulting transition matrix can be estimated more accu rately. Moreover, while some setups impose a fixed finite state space, other allow for possible refinements in the discretization level and for consecutive improvements in the convergence monitoring.

Pivotal Measures in Statistical Experiments and Sufficiency

Download Pivotal Measures in Statistical Experiments and Sufficiency PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461226449
Total Pages : 138 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Pivotal Measures in Statistical Experiments and Sufficiency by : Sakutaro Yamada

Download or read book Pivotal Measures in Statistical Experiments and Sufficiency written by Sakutaro Yamada and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present work I want to show a mathematical study of the statistical notion of sufficiency mainly for undominated statistical experiments. The famous Burkholder's (1961) and Pitcher's(1957) examples motivated some researchers to develop new theory of sufficiency. Le Cam (1964) is probably the most excellent paper in this field of study. This note also belongs to the same area. Though it is more restrictive than Le Cam's paper(1964), a study which is connected more directly with the classical papers of Halmos and Savage(1949) , and Bahadur(1954) is shown. Namely I want to develop a study based on the notion of pivotal measure which was introduced by Halmos and Savage(1949) . It is great pleasure to have this opportunity to thank Professor H. Heyer and Professor H. Morimoto for their careful reading the manuscript and valuable comments on it. I am also thankful to Professor H. Luschgy and Professor D. Mussmann for thei r proposal of wr i ting "the note". I would like to dedicate this note to the memory of my father Eizo.

Econometric Analysis of Count Data

Download Econometric Analysis of Count Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662041499
Total Pages : 291 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Econometric Analysis of Count Data by : Rainer Winkelmann

Download or read book Econometric Analysis of Count Data written by Rainer Winkelmann and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objective of this book is to provide an introduction to the econometric modeling of count data for graduate students and researchers. It should serve anyone whose interest lies either in developing the field fur ther, or in applying existing methods to empirical questions. Much of the material included in this book is not specific to economics, or to quantita tive social sciences more generally, but rather extends to disciplines such as biometrics and technometrics. Applications are as diverse as the number of congressional budget vetoes, the number of children in a household, and the number of mechanical defects in a production line. The unifying theme is a focus on regression models in which a dependent count variable is modeled as a function of independent variables which mayor may not be counts as well. The modeling of count data has come of age. Inclusion of some of the fundamental models in basic textbooks, and implementation on standard computer software programs bear witness to that. Based on the standard Poisson regression model, numerous extensions and alternatives have been developed to address the common challenges faced in empirical modeling (unobserved heterogeneity, selectivity, endogeneity, measurement error, and dependent observations in the context of panel data or multivariate data, to name but a few) as well as the challenges that are specific to count data (e. g. , over dispersion and underdispersion).

Series Approximation Methods in Statistics

Download Series Approximation Methods in Statistics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475742754
Total Pages : 162 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Series Approximation Methods in Statistics by : John E. Kolassa

Download or read book Series Approximation Methods in Statistics written by John E. Kolassa and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was originally compiled for a course I taught at the University of Rochester in the fall of 1991, and is intended to give advanced graduate students in statistics an introduction to Edgeworth and saddlepoint approximations, and related techniques. Many other authors have also written monographs on this subject, and so this work is narrowly focused on two areas not recently discussed in theoretical text books. These areas are, first, a rigorous consideration of Edgeworth and saddlepoint expansion limit theorems, and second, a survey of the more recent developments in the field. In presenting expansion limit theorems I have drawn heavily 011 notation of McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth expansions. For saddlepoint notation and results I relied most heavily on the many papers of Daniels, and a review paper by Reid (1988). Throughout this book I have tried to maintain consistent notation and to present theorems in such a way as to make a few theoretical results useful in as many contexts as possible. This was not only in order to present as many results with as few proofs as possible, but more importantly to show the interconnections between the various facets of asymptotic theory. Special attention is paid to regularity conditions. The reasons they are needed and the parts they play in the proofs are both highlighted.

Case Studies in Bayesian Statistics

Download Case Studies in Bayesian Statistics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461227143
Total Pages : 446 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Case Studies in Bayesian Statistics by : Constantine Gatsonis

Download or read book Case Studies in Bayesian Statistics written by Constantine Gatsonis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past few years have witnessed dramatic advances in computational methods for Bayesian inference. As a result, Bayesian approaches to solving a wide variety of problems in data analysis and decision-making have become feasible, and there is currently a growth spurt in the application of Bayesian methods. The purpose of this volume is to present several detailed examples of applications of Bayesian thinking, with an emphasis on the scientific or technological context of the problem being solved. The papers collected here were presented and discussed at a Workshop held at Carnegie-Mellon University, September 29 through October 1, 1991. There are five ma jor articles, each with two discussion pieces and a reply. These articles were invited by us following a public solicitation of abstracts. The problems they address are diverse, but all bear on policy decision-making. Though not part of our original design for the Workshop, that commonality of theme does emphasize the usefulness of Bayesian meth ods in this arena. Along with the invited papers were several additional commentaries of a general nature; the first comment was invited and the remainder grew out of the discussion at the Workshop. In addition there are nine contributed papers, selected from the thirty-four presented at the Workshop, on a variety of applications. This collection of case studies illustrates the ways in which Bayesian methods are being incorporated into statistical practice. The strengths (and limitations) of the approach become apparent through the examples.

Regression Models for Time Series Analysis

Download Regression Models for Time Series Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471461687
Total Pages : 361 pages
Book Rating : 4.4/5 (714 download)

DOWNLOAD NOW!


Book Synopsis Regression Models for Time Series Analysis by : Benjamin Kedem

Download or read book Regression Models for Time Series Analysis written by Benjamin Kedem and published by John Wiley & Sons. This book was released on 2005-03-11 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough review of the most current regression methods in time series analysis Regression methods have been an integral part of time series analysis for over a century. Recently, new developments have made major strides in such areas as non-continuous data where a linear model is not appropriate. This book introduces the reader to newer developments and more diverse regression models and methods for time series analysis. Accessible to anyone who is familiar with the basic modern concepts of statistical inference, Regression Models for Time Series Analysis provides a much-needed examination of recent statistical developments. Primary among them is the important class of models known as generalized linear models (GLM) which provides, under some conditions, a unified regression theory suitable for continuous, categorical, and count data. The authors extend GLM methodology systematically to time series where the primary and covariate data are both random and stochastically dependent. They introduce readers to various regression models developed during the last thirty years or so and summarize classical and more recent results concerning state space models. To conclude, they present a Bayesian approach to prediction and interpolation in spatial data adapted to time series that may be short and/or observed irregularly. Real data applications and further results are presented throughout by means of chapter problems and complements. Notably, the book covers: * Important recent developments in Kalman filtering, dynamic GLMs, and state-space modeling * Associated computational issues such as Markov chain, Monte Carlo, and the EM-algorithm * Prediction and interpolation * Stationary processes

Modeling Discrete Time-to-Event Data

Download Modeling Discrete Time-to-Event Data PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319281585
Total Pages : 252 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Modeling Discrete Time-to-Event Data by : Gerhard Tutz

Download or read book Modeling Discrete Time-to-Event Data written by Gerhard Tutz and published by Springer. This book was released on 2016-06-14 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are explained. Each section includes a set of exercises on the respective topics. Various functions and tools for the analysis of discrete survival data are collected in the R package discSurv that accompanies the book.

Latent Variable Modeling and Applications to Causality

Download Latent Variable Modeling and Applications to Causality PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146121842X
Total Pages : 285 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Latent Variable Modeling and Applications to Causality by : Maia Berkane

Download or read book Latent Variable Modeling and Applications to Causality written by Maia Berkane and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers refereed papers presented at the 1994 UCLA conference on "La tent Variable Modeling and Application to Causality. " The meeting was organized by the UCLA Interdivisional Program in Statistics with the purpose of bringing together a group of people who have done recent advanced work in this field. The papers in this volume are representative of a wide variety of disciplines in which the use of latent variable models is rapidly growing. The volume is divided into two broad sections. The first section covers Path Models and Causal Reasoning and the papers are innovations from contributors in disciplines not traditionally associated with behavioural sciences, (e. g. computer science with Judea Pearl and public health with James Robins). Also in this section are contri butions by Rod McDonald and Michael Sobel who have a more traditional approach to causal inference, generating from problems in behavioural sciences. The second section encompasses new approaches to questions of model selection with emphasis on factor analysis and time varying systems. Amemiya uses nonlinear factor analysis which has a higher order of complexity associated with the identifiability condi tions. Muthen studies longitudinal hierarchichal models with latent variables and treats the time vector as a variable rather than a level of hierarchy. Deleeuw extends exploratory factor analysis models by including time as a variable and allowing for discrete and ordi nal latent variables. Arminger looks at autoregressive structures and Bock treats factor analysis models for categorical data.

Applications of Computer Aided Time Series Modeling

Download Applications of Computer Aided Time Series Modeling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461222524
Total Pages : 335 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Applications of Computer Aided Time Series Modeling by : Masanao Aoki

Download or read book Applications of Computer Aided Time Series Modeling written by Masanao Aoki and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of three parts: Part One is composed of two introductory chapters. The first chapter provides an instrumental varible interpretation of the state space time series algorithm originally proposed by Aoki (1983), and gives an introductory account for incorporating exogenous signals in state space models. The second chapter, by Havenner, gives practical guidance in apply ing this algorithm by one of the most experienced practitioners of the method. Havenner begins by summarizing six reasons state space methods are advanta geous, and then walks the reader through construction and evaluation of a state space model for four monthly macroeconomic series: industrial production in dex, consumer price index, six month commercial paper rate, and money stock (Ml). To single out one of the several important insights in modeling that he shares with the reader, he discusses in Section 2ii the effects of sampling er rors and model misspecification on successful modeling efforts. He argues that model misspecification is an important amplifier of the effects of sampling error that may cause symplectic matrices to have complex unit roots, a theoretical impossibility. Correct model specifications increase efficiency of estimators and often eliminate this finite sample problem. This is an important insight into the positive realness of covariance matrices; positivity has been emphasized by system engineers to the exclusion of other methods of reducing sampling error and alleviating what is simply a finite sample problem. The second and third parts collect papers that describe specific applications.

Learning from Data

Download Learning from Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461224047
Total Pages : 444 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Learning from Data by : Doug Fisher

Download or read book Learning from Data written by Doug Fisher and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ten years ago Bill Gale of AT&T Bell Laboratories was primary organizer of the first Workshop on Artificial Intelligence and Statistics. In the early days of the Workshop series it seemed clear that researchers in AI and statistics had common interests, though with different emphases, goals, and vocabularies. In learning and model selection, for example, a historical goal of AI to build autonomous agents probably contributed to a focus on parameter-free learning systems, which relied little on an external analyst's assumptions about the data. This seemed at odds with statistical strategy, which stemmed from a view that model selection methods were tools to augment, not replace, the abilities of a human analyst. Thus, statisticians have traditionally spent considerably more time exploiting prior information of the environment to model data and exploratory data analysis methods tailored to their assumptions. In statistics, special emphasis is placed on model checking, making extensive use of residual analysis, because all models are 'wrong', but some are better than others. It is increasingly recognized that AI researchers and/or AI programs can exploit the same kind of statistical strategies to good effect. Often AI researchers and statisticians emphasized different aspects of what in retrospect we might now regard as the same overriding tasks.