Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Advanced Architecture And Training Algorithms For Recurrent Neural Networks
Download Advanced Architecture And Training Algorithms For Recurrent Neural Networks full books in PDF, epub, and Kindle. Read online Advanced Architecture And Training Algorithms For Recurrent Neural Networks ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Recurrent Neural Networks for Prediction by : Danilo Mandic
Download or read book Recurrent Neural Networks for Prediction written by Danilo Mandic and published by . This book was released on 2003 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters.? Analyses the relationships between RNNs and various nonlinear models and filters, and introduces spatio-temporal architectur.
Book Synopsis Neural Networks and Deep Learning by : Charu C. Aggarwal
Download or read book Neural Networks and Deep Learning written by Charu C. Aggarwal and published by Springer. This book was released on 2018-08-25 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.
Book Synopsis Long Short-Term Memory Networks With Python by : Jason Brownlee
Download or read book Long Short-Term Memory Networks With Python written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2017-07-20 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Long Short-Term Memory network, or LSTM for short, is a type of recurrent neural network that achieves state-of-the-art results on challenging prediction problems. In this laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about LSTMs. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what LSTMs are, and how to develop a suite of LSTM models to get the most out of the method on your sequence prediction problems.
Book Synopsis Proceedings of 3rd International Conference on the Industry 4.0 Model for Advanced Manufacturing by : Jun Ni
Download or read book Proceedings of 3rd International Conference on the Industry 4.0 Model for Advanced Manufacturing written by Jun Ni and published by Springer. This book was released on 2018-05-08 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 3rd International Conference on the Industry 4.0 Model for Advanced Manufacturing (AMP 2018), held in Belgrade, Serbia, on 5–7 June 2018, the latest in a series of high-level conferences that brings together experts from academia and industry to exchange knowledge, ideas, experiences, research findings, and information in the field of manufacturing. The book addresses a wide range of topics, including, for example, design of smart and intelligent products, developments in CAD/CAM technologies, rapid prototyping and reverse engineering, multistage manufacturing processes, manufacturing automation in the Industry 4.0 model, cloud-based products, and cyber-physical and reconfigurable manufacturing systems. By providing updates on key issues and recent advances in manufacturing engineering and technologies, it aids the transfer of vital knowledge to the next generation of academics and practitioners. It appeals to anyone working or conducting research in this rapidly evolving field.
Download or read book Backpropagation written by Yves Chauvin and published by Psychology Press. This book was released on 2013-02-01 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Composed of three sections, this book presents the most popular training algorithm for neural networks: backpropagation. The first section presents the theory and principles behind backpropagation as seen from different perspectives such as statistics, machine learning, and dynamical systems. The second presents a number of network architectures that may be designed to match the general concepts of Parallel Distributed Processing with backpropagation learning. Finally, the third section shows how these principles can be applied to a number of different fields related to the cognitive sciences, including control, speech recognition, robotics, image processing, and cognitive psychology. The volume is designed to provide both a solid theoretical foundation and a set of examples that show the versatility of the concepts. Useful to experts in the field, it should also be most helpful to students seeking to understand the basic principles of connectionist learning and to engineers wanting to add neural networks in general -- and backpropagation in particular -- to their set of problem-solving methods.
Book Synopsis Database Systems for Advanced Applications by : Selçuk Candan
Download or read book Database Systems for Advanced Applications written by Selçuk Candan and published by Springer. This book was released on 2017-03-20 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume set LNCS 10177 and 10178 constitutes the refereed proceedings of the 22nd International Conference on Database Systems for Advanced Applications, DASFAA 2017, held in Suzhou, China, in March 2017. The 73 full papers, 9 industry papers, 4 demo papers and 3 tutorials were carefully selected from a total of 300 submissions. The papers are organized around the following topics: semantic web and knowledge management; indexing and distributed systems; network embedding; trajectory and time series data processing; data mining; query processing and optimization; text mining; recommendation; security, privacy, senor and cloud; social network analytics; map matching and spatial keywords; query processing and optimization; search and information retrieval; string and sequence processing; stream date processing; graph and network data processing; spatial databases; real time data processing; big data; social networks and graphs.
Book Synopsis Supervised Sequence Labelling with Recurrent Neural Networks by : Alex Graves
Download or read book Supervised Sequence Labelling with Recurrent Neural Networks written by Alex Graves and published by Springer. This book was released on 2012-02-06 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.
Book Synopsis Advanced Deep Learning with R by : Bharatendra Rai
Download or read book Advanced Deep Learning with R written by Bharatendra Rai and published by Packt Publishing Ltd. This book was released on 2019-12-17 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover best practices for choosing, building, training, and improving deep learning models using Keras-R, and TensorFlow-R libraries Key FeaturesImplement deep learning algorithms to build AI models with the help of tips and tricksUnderstand how deep learning models operate using expert techniquesApply reinforcement learning, computer vision, GANs, and NLP using a range of datasetsBook Description Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data. Advanced Deep Learning with R will help you understand popular deep learning architectures and their variants in R, along with providing real-life examples for them. This deep learning book starts by covering the essential deep learning techniques and concepts for prediction and classification. You will learn about neural networks, deep learning architectures, and the fundamentals for implementing deep learning with R. The book will also take you through using important deep learning libraries such as Keras-R and TensorFlow-R to implement deep learning algorithms within applications. You will get up to speed with artificial neural networks, recurrent neural networks, convolutional neural networks, long short-term memory networks, and more using advanced examples. Later, you'll discover how to apply generative adversarial networks (GANs) to generate new images; autoencoder neural networks for image dimension reduction, image de-noising and image correction and transfer learning to prepare, define, train, and model a deep neural network. By the end of this book, you will be ready to implement your knowledge and newly acquired skills for applying deep learning algorithms in R through real-world examples. What you will learnLearn how to create binary and multi-class deep neural network modelsImplement GANs for generating new imagesCreate autoencoder neural networks for image dimension reduction, image de-noising and image correctionImplement deep neural networks for performing efficient text classificationLearn to define a recurrent convolutional network model for classification in KerasExplore best practices and tips for performance optimization of various deep learning modelsWho this book is for This book is for data scientists, machine learning practitioners, deep learning researchers and AI enthusiasts who want to develop their skills and knowledge to implement deep learning techniques and algorithms using the power of R. A solid understanding of machine learning and working knowledge of the R programming language are required.
Book Synopsis Machine Intelligence by : Suresh Samudrala
Download or read book Machine Intelligence written by Suresh Samudrala and published by Notion Press. This book was released on 2019-01-11 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence and machine learning are considered as hot technologies of this century. As these technologies move from research labs to enterprise data centers, the need for skilled professionals is continuously on the rise. This book is intended for IT and business professionals looking to gain proficiency in these technologies but are turned off by the complex mathematical equations. This book is also useful for students in the area of artificial intelligence and machine learning to gain a conceptual understanding of the algorithms and get an industry perspective. This book is an ideal place to start your journey as • Core concepts of machine learning algorithms are explained in plain English using illustrations, data tables and examples • Intuitive meaning of the mathematics behind popular machine learning algorithms explained • Covers classical machine learning, neural networks and deep learning algorithms At a time when the IT industry is focusing on reskilling its vast human resources, Machine intelligence is a very timely publication. It has a simple approach that builds up from basics, which would help software engineers and students looking to learn about the field as well as those who might have started off without the benefit of a structured introduction or sound basics. Highly recommended. - Siddhartha S, Founder and CEO of Intain - Financial technology startup Suresh has written a very accessible book for practitioners. The book has depth yet avoids excessive mathematics. The coverage of the subject is very good and has most of the concepts required for understanding machine learning if someone is looking for depth. For senior management, it will provide a good overview. It is well written. I highly recommend it. - Whee Teck ONG, CEO of Trusted Source and VP of Singapore Computer Society
Book Synopsis Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms by : S. Sumathi
Download or read book Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms written by S. Sumathi and published by Nova Science Publishers. This book was released on 2021 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms: A Practical Approach Using Python describes the deep learning models and ensemble approaches applied to decision-making problems. The authors have addressed the concepts of deep learning, convolutional neural networks, recurrent neural networks, and ensemble learning in a practical sense providing complete code and implementation for several real-world examples. The authors of this book teach the concepts of machine learning for undergraduate and graduate-level classes and have worked with Fortune 500 clients to formulate data analytics strategies and operationalize these strategies. The book will benefit information professionals, programmers, consultants, professors, students, and industry experts who seek a variety of real-world illustrations with an implementation based on machine learning algorithms"--
Book Synopsis Sustainable Advanced Computing by : Sagaya Aurelia
Download or read book Sustainable Advanced Computing written by Sagaya Aurelia and published by Springer Nature. This book was released on 2022-03-30 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents select proceedings of the International Conference on Sustainable Advanced Computing (ICSAC – 2021). It covers the latest research on a wide range of topics spanning theory, systems, applications, and case studies in advanced computing. Topics covered are machine intelligence, expert systems, robotics, natural language processing, cognitive science, quantum computing, deep learning, pattern recognition, human-computer interface, biometrics, graph theory, etc. The volume focuses on the novel research findings and innovations of various researchers. In addition, the book will be a promising solution for new generation-based sustainable, intelligent systems that are machine and human-centered with modern models and appropriate amalgamations of collaborative practices with a general objective of better research in all aspects of sustainable advanced computing.
Book Synopsis Programming with TensorFlow by : Kolla Bhanu Prakash
Download or read book Programming with TensorFlow written by Kolla Bhanu Prakash and published by Springer Nature. This book was released on 2021-01-22 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical book provides an end-to-end guide to TensorFlow, the leading open source software library that helps you build and train neural networks for deep learning, Natural Language Processing (NLP), speech recognition, and general predictive analytics. The book provides a hands-on approach to TensorFlow fundamentals for a broad technical audience—from data scientists and engineers to students and researchers. The authors begin by working through some basic examples in TensorFlow before diving deeper into topics such as CNN, RNN, LSTM, and GNN. The book is written for those who want to build powerful, robust, and accurate predictive models with the power of TensorFlow, combined with other open source Python libraries. The authors demonstrate TensorFlow projects on Single Board Computers (SBCs).
Book Synopsis Advanced Technologies, Systems, and Applications IX by : Naida Ademović
Download or read book Advanced Technologies, Systems, and Applications IX written by Naida Ademović and published by Springer Nature. This book was released on with total page 932 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Handbook of Research on Advanced Hybrid Intelligent Techniques and Applications by : Bhattacharyya, Siddhartha
Download or read book Handbook of Research on Advanced Hybrid Intelligent Techniques and Applications written by Bhattacharyya, Siddhartha and published by IGI Global. This book was released on 2015-11-03 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conventional computational methods, and even the latest soft computing paradigms, often fall short in their ability to offer solutions to many real-world problems due to uncertainty, imprecision, and circumstantial data. Hybrid intelligent computing is a paradigm that addresses these issues to a considerable extent. The Handbook of Research on Advanced Hybrid Intelligent Techniques and Applications highlights the latest research on various issues relating to the hybridization of artificial intelligence, practical applications, and best methods for implementation. Focusing on key interdisciplinary computational intelligence research dealing with soft computing techniques, pattern mining, data analysis, and computer vision, this book is relevant to the research needs of academics, IT specialists, and graduate-level students.
Book Synopsis Advanced Classification Techniques for Healthcare Analysis by : Chakraborty, Chinmay
Download or read book Advanced Classification Techniques for Healthcare Analysis written by Chakraborty, Chinmay and published by IGI Global. This book was released on 2019-02-22 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical and information communication technology professionals are working to develop robust classification techniques, especially in healthcare data/image analysis, to ensure quick diagnoses and treatments to patients. Without fast and immediate access to healthcare databases and information, medical professionals’ success rates and treatment options become limited and fall to disastrous levels. Advanced Classification Techniques for Healthcare Analysis provides emerging insight into classification techniques in delivering quality, accurate, and affordable healthcare, while also discussing the impact health data has on medical treatments. Featuring coverage on a broad range of topics such as early diagnosis, brain-computer interface, metaheuristic algorithms, clustering techniques, learning schemes, and mobile telemedicine, this book is ideal for medical professionals, healthcare administrators, engineers, researchers, academicians, and technology developers seeking current research on furthering information and communication technology that improves patient care.
Book Synopsis Neural Networks and Deep Learning Fundamentals by : Dr.Kuncham Sreenivasa Rao
Download or read book Neural Networks and Deep Learning Fundamentals written by Dr.Kuncham Sreenivasa Rao and published by Leilani Katie Publication. This book was released on 2024-07-08 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dr.Kuncham Sreenivasa Rao, Associate Professor, Department of Computer Science and Engineering, Faculty of Science and Technology (ICFAI Tech), ICFAI Foundation for Higher Education (IFHE), Hyderabad, Telangana, India. Dr.Ugendhar Addagatla, Associate Professor, Department of Computer Science and Engineering, Maturi Venkata Subba Rao (MVSR) Engineering College, Nadergul, Hyderabad, Telangana, India. Dr.Rajitha Kotoju, Assistant Professor, Department of Computer Science and Engineering, Mahatma Gandhi Institute of Technology, Hyderabad, Telangana, India.
Book Synopsis Recurrent Neural Networks by : Larry Medsker
Download or read book Recurrent Neural Networks written by Larry Medsker and published by CRC Press. This book was released on 1999-12-20 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: With existent uses ranging from motion detection to music synthesis to financial forecasting, recurrent neural networks have generated widespread attention. The tremendous interest in these networks drives Recurrent Neural Networks: Design and Applications, a summary of the design, applications, current research, and challenges of this subfield of artificial neural networks. This overview incorporates every aspect of recurrent neural networks. It outlines the wide variety of complex learning techniques and associated research projects. Each chapter addresses architectures, from fully connected to partially connected, including recurrent multilayer feedforward. It presents problems involving trajectories, control systems, and robotics, as well as RNN use in chaotic systems. The authors also share their expert knowledge of ideas for alternate designs and advances in theoretical aspects. The dynamical behavior of recurrent neural networks is useful for solving problems in science, engineering, and business. This approach will yield huge advances in the coming years. Recurrent Neural Networks illuminates the opportunities and provides you with a broad view of the current events in this rich field.