Adsorption of Elemental Mercury on Pulverized Coal Flash

Download Adsorption of Elemental Mercury on Pulverized Coal Flash PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 344 pages
Book Rating : 4.:/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Adsorption of Elemental Mercury on Pulverized Coal Flash by : Shannon D. Serre

Download or read book Adsorption of Elemental Mercury on Pulverized Coal Flash written by Shannon D. Serre and published by . This book was released on 1999 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Fundamental Understanding of Mercury Removal from Coal Combustion

Download Fundamental Understanding of Mercury Removal from Coal Combustion PDF Online Free

Author :
Publisher : Stanford University
ISBN 13 :
Total Pages : 195 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Fundamental Understanding of Mercury Removal from Coal Combustion by : Erdem Sasmaz

Download or read book Fundamental Understanding of Mercury Removal from Coal Combustion written by Erdem Sasmaz and published by Stanford University. This book was released on 2011 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coal-fired power plants are a major anthropogenic source of worldwide mercury (Hg) emissions. Since mercury is considered to be one of the most toxic metals found in the environment, Hg emissions from coal-fired power plants is of major environmental concern. Mercury in coal is vaporized into its gaseous elemental form throughout the coal combustion process. Elemental Hg can be oxidized in subsequent reactions with other gaseous components (homogeneous) and solid materials (heterogeneous) in coal-fired flue gases. While oxidized Hg in coal-fired flue gases is readily controlled by its adsorption onto fly ash and/or its dissolution into existing solution-based sulfur dioxide (SO2) scrubbers, elemental Hg is not controlled. The extent of elemental Hg formed during coal combustion is difficult to predict since it is dependent on the type of coal burned, combustion conditions, and existing control technologies installed. Therefore, it is important to understand heterogeneous Hg reaction mechanisms to predict the speciation of Hg emissions from coal-fired power plants to design and effectively determine the best applicable control technologies. In this work, theoretical and experimental investigations have been performed to investigate the adsorption and in some cases the oxidation, of Hg on solid surfaces, e.g., calcium oxide (CaO), noble metals and activated carbon (AC). The objective of this research is to identify potential materials that can be used as multi-pollutant sorbents in power plants by carrying out both high-level density functional theory (DFT) electronic structure calculations and experiments to understand heterogeneous chemical pathways of Hg. This research uses a fundamental science-based approach to understand the environmental problems caused by coal-fired energy production and provides solutions to the power generation industry for emissions reductions. Understanding the mechanism associated with Hg and SO2 adsorption on CaO will help to optimize the conditions or material to limit Hg emissions from the flue gas desulfurization process. Plane-wave DFT calculations were used to investigate the binding mechanism of Hg species and SO2 on the CaO(100) surface. The binding strengths on the high-symmetry CaO adsorption sites have been investigated for elemental Hg, SO2, mercury chlorides (HgCl and HgCl2) and mercuric oxide (HgO). It has been discovered that HgCl, HgCl2, and SO2 chemisorb on the CaO(100) surface at 0.125 ML coverage. Binding energies of elemental Hg are minimal indicating a physisorption mechanism. Noble metals such as palladium (Pd), gold (Au), silver (Ag), and copper (Cu) have been proposed to capture elemental Hg. Plane-wave DFT calculations have been carried out to investigate the mercury interactions with Pd binary alloys and overlays in addition to pure Pd, Au, Ag, and Cu surfaces. It has been determined that Pd has the highest mercury binding energy in comparison to other noble metals. In addition, Pd is found to be the primary surface atom responsible for increasing the adsorption of Hg with the surface in both Pd binary alloys and overlays. Deposition of Pd overlays on Au and Ag has been found to enhance the reactivity of the surface by shifting the d-states of surface atoms up in energy. The possible binding mechanisms of elemental Hg onto virgin, brominated and sulfonated AC fiber and brominated powder AC sorbents have been investigated through packed-bed experiments in a stream of air and simulated flue gas conditions, including SO2, hydrogen chloride (HCl), nitrogen oxide (NO) nitrogen dioxide (NO2). A combination of spectroscopy and plane-wave DFT calculations was used to characterize the sorption process. X-ray photoelectron spectroscopy (XPS) and x-ray absorption fine structure (XAFS) spectroscopy were used to analyze the surface and bulk chemical compositions of brominated AC sorbents reacted with Hg0. Through XPS surface characterization studies it was found that Hg adsorption is primarily associated with halogens on the surface. Elemental Hg is oxidized on AC surfaces and the oxidation state of adsorbed Hg is found to be Hg2+. Though plane-wave DFT and density of states (DOS) calculations indicate that Hg is more stable when it is bound to the edge carbon atom interacting with a single bromine bound atop of Hg, a model that includes an interaction between the Hg and an additional Br atom matches best with experimental data obtained from extended x-ray absorption fine structure (EXAFS) spectroscopy. The flue gas species such as HCl and bromine (Br2) enhance the Hg adsorption, while SO2 is found to decrease the Hg adsorption significantly by poisoning the active sites on the AC surface. The AC sorbents represent the most market-ready technology for Hg capture and therefore have been investigated by both theory and experiment in this work. Future work will include similar characterization and bench-scale experiments to test the metal-based materials for the sorbent and oxidation performance.

Coal Fired Flue Gas Mercury Emission Controls

Download Coal Fired Flue Gas Mercury Emission Controls PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662463474
Total Pages : 163 pages
Book Rating : 4.6/5 (624 download)

DOWNLOAD NOW!


Book Synopsis Coal Fired Flue Gas Mercury Emission Controls by : Jiang Wu

Download or read book Coal Fired Flue Gas Mercury Emission Controls written by Jiang Wu and published by Springer. This book was released on 2015-03-17 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations. Readers will arrive at a comprehensive understanding of various mercury emission control methods that are suitable for industrial applications. The book is intended for scientists, researchers, engineers and graduate students in the fields of energy science and technology, environmental science and technology and chemical engineering.

Fundamental Understanding of Mercury Removal from Coal Combustion

Download Fundamental Understanding of Mercury Removal from Coal Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (746 download)

DOWNLOAD NOW!


Book Synopsis Fundamental Understanding of Mercury Removal from Coal Combustion by : Erdem Sasmaz

Download or read book Fundamental Understanding of Mercury Removal from Coal Combustion written by Erdem Sasmaz and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Coal-fired power plants are a major anthropogenic source of worldwide mercury (Hg) emissions. Since mercury is considered to be one of the most toxic metals found in the environment, Hg emissions from coal-fired power plants is of major environmental concern. Mercury in coal is vaporized into its gaseous elemental form throughout the coal combustion process. Elemental Hg can be oxidized in subsequent reactions with other gaseous components (homogeneous) and solid materials (heterogeneous) in coal-fired flue gases. While oxidized Hg in coal-fired flue gases is readily controlled by its adsorption onto fly ash and/or its dissolution into existing solution-based sulfur dioxide (SO2) scrubbers, elemental Hg is not controlled. The extent of elemental Hg formed during coal combustion is difficult to predict since it is dependent on the type of coal burned, combustion conditions, and existing control technologies installed. Therefore, it is important to understand heterogeneous Hg reaction mechanisms to predict the speciation of Hg emissions from coal-fired power plants to design and effectively determine the best applicable control technologies. In this work, theoretical and experimental investigations have been performed to investigate the adsorption and in some cases the oxidation, of Hg on solid surfaces, e.g., calcium oxide (CaO), noble metals and activated carbon (AC). The objective of this research is to identify potential materials that can be used as multi-pollutant sorbents in power plants by carrying out both high-level density functional theory (DFT) electronic structure calculations and experiments to understand heterogeneous chemical pathways of Hg. This research uses a fundamental science-based approach to understand the environmental problems caused by coal-fired energy production and provides solutions to the power generation industry for emissions reductions. Understanding the mechanism associated with Hg and SO2 adsorption on CaO will help to optimize the conditions or material to limit Hg emissions from the flue gas desulfurization process. Plane-wave DFT calculations were used to investigate the binding mechanism of Hg species and SO2 on the CaO(100) surface. The binding strengths on the high-symmetry CaO adsorption sites have been investigated for elemental Hg, SO2, mercury chlorides (HgCl and HgCl2) and mercuric oxide (HgO). It has been discovered that HgCl, HgCl2, and SO2 chemisorb on the CaO(100) surface at 0.125 ML coverage. Binding energies of elemental Hg are minimal indicating a physisorption mechanism. Noble metals such as palladium (Pd), gold (Au), silver (Ag), and copper (Cu) have been proposed to capture elemental Hg. Plane-wave DFT calculations have been carried out to investigate the mercury interactions with Pd binary alloys and overlays in addition to pure Pd, Au, Ag, and Cu surfaces. It has been determined that Pd has the highest mercury binding energy in comparison to other noble metals. In addition, Pd is found to be the primary surface atom responsible for increasing the adsorption of Hg with the surface in both Pd binary alloys and overlays. Deposition of Pd overlays on Au and Ag has been found to enhance the reactivity of the surface by shifting the d-states of surface atoms up in energy. The possible binding mechanisms of elemental Hg onto virgin, brominated and sulfonated AC fiber and brominated powder AC sorbents have been investigated through packed-bed experiments in a stream of air and simulated flue gas conditions, including SO2, hydrogen chloride (HCl), nitrogen oxide (NO) nitrogen dioxide (NO2). A combination of spectroscopy and plane-wave DFT calculations was used to characterize the sorption process. X-ray photoelectron spectroscopy (XPS) and x-ray absorption fine structure (XAFS) spectroscopy were used to analyze the surface and bulk chemical compositions of brominated AC sorbents reacted with Hg0. Through XPS surface characterization studies it was found that Hg adsorption is primarily associated with halogens on the surface. Elemental Hg is oxidized on AC surfaces and the oxidation state of adsorbed Hg is found to be Hg2+. Though plane-wave DFT and density of states (DOS) calculations indicate that Hg is more stable when it is bound to the edge carbon atom interacting with a single bromine bound atop of Hg, a model that includes an interaction between the Hg and an additional Br atom matches best with experimental data obtained from extended x-ray absorption fine structure (EXAFS) spectroscopy. The flue gas species such as HCl and bromine (Br2) enhance the Hg adsorption, while SO2 is found to decrease the Hg adsorption significantly by poisoning the active sites on the AC surface. The AC sorbents represent the most market-ready technology for Hg capture and therefore have been investigated by both theory and experiment in this work. Future work will include similar characterization and bench-scale experiments to test the metal-based materials for the sorbent and oxidation performance.

Mercury Reaction Chemistry in Combustion Flue Gases from Experiments and Theory

Download Mercury Reaction Chemistry in Combustion Flue Gases from Experiments and Theory PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (743 download)

DOWNLOAD NOW!


Book Synopsis Mercury Reaction Chemistry in Combustion Flue Gases from Experiments and Theory by : Bihter Padak

Download or read book Mercury Reaction Chemistry in Combustion Flue Gases from Experiments and Theory written by Bihter Padak and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Emissions from coal combustion processes constitute a significant amount of the elemental mercury released into the atmosphere today. Coal-fired power plants in the United States, with the capacity of just over 300GW, are the greatest anthropogenic source of mercury emissions. Mercury exists in coal combustion flue gas in a variety of forms depending on the coal type and combustion conditions; i.e., elemental, oxidized and particulate. Particulate mercury in the flue gas can be removed using air pollution control devices such as electrostatic precipitators and fabric filters. Oxidized mercury is easily captured by wet flue gas desulfurization scrubbers, while gaseous elemental mercury passes through the scrubbers readily. Activated carbon, when injected into the gas stream of coal-fired boilers, is effective in capturing both elemental and oxidized mercury through adsorption processes. However, the mechanism by which mercury adsorbs on activated carbon is not exactly known and its understanding is crucial to the design and fabrication of effective capture technologies for mercury. The objective of the current study is to apply theoretical-based cluster modeling to examine the possible binding mechanism of mercury on activated carbon. The effects of activated carbon's different surface functional groups and halogens on elemental mercury adsorption have been examined. Also, a thermodynamic approach is followed to examine the binding mechanism of mercury and its oxidized species such as HgCl and HgCl2 on a simulated carbon surface with and without Cl. Energies of different possible surface complexes and possible products are compared and dominant pathways are determined relatively. Since different methods are employed to capture varying forms of mercury, understanding mercury speciation during combustion and how the transformations occur between different forms is essential to developing an effective control mechanism for removing mercury from flue gas. In this study, homogeneous oxidation of mercury via chlorine is examined experimentally in a simulated flue gas environment. Mercury and chlorine are introduced into a laminar premixed methane-air flame. Cooled flue gas is sampled and sent to a custom-built electron ionization quadrupole mass spectrometer specially designed for mercury measurement on the order of parts per billion (ppb) in flue gas. The use of a mass spectrometer allows for distinguishing between the different forms of oxidized mercury (Hg+, Hg+2). By directly measuring mercury species accurately, one can determine the actual extent of mercury oxidation in the flue gas, which will aid in further developing mercury control technologies.

Elemental Mercury Adsorption and Recovery Byelectrothermal Swing System with Activated Carbonfiber Cloth

Download Elemental Mercury Adsorption and Recovery Byelectrothermal Swing System with Activated Carbonfiber Cloth PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Elemental Mercury Adsorption and Recovery Byelectrothermal Swing System with Activated Carbonfiber Cloth by : 陳秉圻

Download or read book Elemental Mercury Adsorption and Recovery Byelectrothermal Swing System with Activated Carbonfiber Cloth written by 陳秉圻 and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Elemental Mercury Adsorption and Recovery by Electrothermal Swing System with Gold Electrodeposited Activated Carbon Fiber Cloth

Download Elemental Mercury Adsorption and Recovery by Electrothermal Swing System with Gold Electrodeposited Activated Carbon Fiber Cloth PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (114 download)

DOWNLOAD NOW!


Book Synopsis Elemental Mercury Adsorption and Recovery by Electrothermal Swing System with Gold Electrodeposited Activated Carbon Fiber Cloth by : 廖華永

Download or read book Elemental Mercury Adsorption and Recovery by Electrothermal Swing System with Gold Electrodeposited Activated Carbon Fiber Cloth written by 廖華永 and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Fine Particle and Mercury Formation and Control During Coal Combustion

Download Fine Particle and Mercury Formation and Control During Coal Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 260 pages
Book Rating : 4.:/5 (897 download)

DOWNLOAD NOW!


Book Synopsis Fine Particle and Mercury Formation and Control During Coal Combustion by : Xiaofei Wang

Download or read book Fine Particle and Mercury Formation and Control During Coal Combustion written by Xiaofei Wang and published by . This book was released on 2014 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pulverized coal combustion is widely used worldwide for the production of electricity. However, it is one of the primary emission sources of air pollutants, including particulate matter (fly ash) and mercury (Hg), into the atmosphere. This dissertation investigated three aspects of pollutant formation and control from the coal combustion process: (1) organic aerosol formation during coal combustion, (2) mercury removal during coal combustion by injection of Vanadium Pentoxide (V2O5), and (3) submicrometer particle formation during oxy-coal combustion. Part. 1. While the characterization and formation of the mineral matter component of aerosol during coal combustion has been well studied and understood, the characterization and fate of corresponding organic matter content was not examined in detail earlier. The first part of this dissertation studies the formation mechanism of organic aerosols during coal combustion. Pilot-scale experiments were conducted in a 1 MW coal combustor, and showed that black carbon aerosol formation was greatly enhanced by increasing the fuel-air equivalence ratio. However, organic carbon aerosol formation was lowered by increasing the fuel-air equivalence ratio, which was opposite to the trend of black carbon aerosol formation. This phenomenon indicates that the formation mechanism of organic carbon aerosol is different from black carbon (soot) aerosol. Detailed organic aerosol formation mechanisms have been studied in a laboratory-scale system. Aerosol mass spectrometry techniques were applied to characterize both coal combustion aerosols from a drop-tube coal combustor and coal pyrolysis products from a flat-flame coal pyrolyzer. The chemical composition of major species for both combustion organic aerosols and pyrolysis products are hydrocarbons, carboxylic acids and aromatic compounds. The similarities of the chemical compositions demonstrate that the products from coal pyrolysis, (the initial step of coal combustion), are the precursors of organic aerosols. More carboxylic acids and oxygenated organic compounds were found in the combustion aerosols, indicating that many pyrolysis products are oxidized before they are converting to organic aerosols. A strong correlation between inorganic and organic aerosol formation mechanisms has been found in this work, demonstrating that inorganic particles play a critical role as carriers of organic species. Sulfate species in inorganic aerosols play a particularly important role in organic aerosol formation. Enhanced organic aerosol formation during the combustion of high sulfur content coal has been observed for the first time. High resolution mass spectra analysis shows the presence of amine-like organics in the aerosols. The correlation between particulate sulfate and organics suggests that acidic sulfate particles may absorb basic amine-like organics, a major coal pyrolysis product, from the gas phase into the particle phase via acid-base neutralization reactions. Part. 2. Coal combustion is a major source of atmospheric mercury. High-temperature sorbent injection is an efficient method to capture metallic species during combustion. This part of the study examines the performance on Hg capture from pulverized coal combustion in a drop-tube furnace. V2O5 was tested as a sorbent and demonstrated good performance on elemental mercury capture, which results from the formation of ultrafine V2O5 particles during the combustion process. It is proposed that the ultrafine V2O5 particles catalyzed Hg0 oxidation on their large surfaces. Hg2+, the oxidation product, may condense on fly ash particle surfaces or on tubing surfaces, thereby being removed from the flue gas. Part. 3. Coal combustion is the largest single contributor to global anthropogenic CO2 emissions. Oxy-coal combustion replaces the air with oxygen and uses recycled flue gas (RFG) as a diluent, resulting in a higher concentration (>98%) of CO2 in the exhaust, which promotes more effective control, capture, and possible conversion of CO2. This part of the dissertation investigates the effects of recycling (up to recycle ratios of 60%) on submicrometer particle formation in a drop-tube furnace system. The recycled exhaust gas containing lower O2 concentration and higher CO2 concentration suppressed submicrometer particle formation. However, it was found that water vapor in recycled exhaust gas greatly enhanced the formation of submicrometer particles. The gas composition changes that result from exhaust-gas recycling significantly affected the size distribution of submicrometer particles at the exit of the combustor. Differences in the particle size distribution with and without the filtration of recycled exhaust gas were insignificant. The composition of the resultant particles in oxy-coal combustion and conventional coal-air combustion as determined by X-ray diffraction was similar.

Mercury Adsorption and Desorption Kinetics

Download Mercury Adsorption and Desorption Kinetics PDF Online Free

Author :
Publisher :
ISBN 13 : 9781267320728
Total Pages : 132 pages
Book Rating : 4.3/5 (27 download)

DOWNLOAD NOW!


Book Synopsis Mercury Adsorption and Desorption Kinetics by : Mark A. Bentley

Download or read book Mercury Adsorption and Desorption Kinetics written by Mark A. Bentley and published by . This book was released on 2012 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mercury emissions in the United States are regulated under the Clean Air Mercury Rule. Multiple mercury removal technologies have been investigated and at this time, activated carbon injection into flue gas has been considered to be an efficient and economically feasible method for the removal of elemental mercury. Also, chemical modifications to activated carbon have shown to increase its mercury sorption capacity and removal efficiency. In this study, adsorption of elemental mercury onto ferric chloride impregnated activated carbon was investigated. The results show that ferric chloride impregnated activated carbon has a higher mercury sorption capacity than raw activated carbon does. A chemisorption mechanism was proposed and confirmed based on the characterization tests of fresh and spent sorbents. A kinetic study for the regeneration of spent sorbents was also conducted. The activation energies of mercury desorption from various substrates were calculated and the corresponding mercury desorption profiles were mathematically modeled.

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds

Download Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 25 pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds by :

Download or read book Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds written by and published by . This book was released on 2008 with total page 25 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxidation of Hg0 with any oxidant or converting it to a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg0 by gas phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas phase reaction rate constants between Hg0 and the sulfur/chlorine compounds were determined, and the effects of temperature and the main components in flue gases were studied. The gas phase reaction between Hg0 and SCl2 is shown to be more rapid than the gas phase reaction with chlorine, and the second order rate constant was 9.1(+-0.5) x 10-18 mL-molecules-1cdots-1 at 373oK. Nitric oxide (NO) inhibited the gas phase reaction of Hg0 with sulfur-chlorine compounds. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg0 removal is about 90percent with 5 ppm SCl2 or S2Cl2 and 40 g/m3 of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that co-injection of 3-5 ppm of SCl2 (or S2Cl2) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90percent of Hg0 can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3percent of SCl2 or S2Cl2 is used. Unlike gas phase reactions, NO exhibited little effect on Hg0 reactions with SCl2 or S2Cl2 on flyash or activated carbon. Mercuric sulfide was identified as one of the principal products of the Hg0/SCl2 or Hg0/S2Cl2 reactions. Additionally, about 8percent of SCl2 or S2Cl2 in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution.

Role of HC1 in Adsorption of Elemental Mercury Vapor by Calcium-based Sorbents

Download Role of HC1 in Adsorption of Elemental Mercury Vapor by Calcium-based Sorbents PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 17 pages
Book Rating : 4.:/5 (464 download)

DOWNLOAD NOW!


Book Synopsis Role of HC1 in Adsorption of Elemental Mercury Vapor by Calcium-based Sorbents by : S. Behrooz Ghorishi

Download or read book Role of HC1 in Adsorption of Elemental Mercury Vapor by Calcium-based Sorbents written by S. Behrooz Ghorishi and published by . This book was released on 1998 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Evaluation of the Mercury Adsorption from Wfgd Wastewater in Coal-fired Power Plant Using Sulfur-containing Activated Carbon

Download Evaluation of the Mercury Adsorption from Wfgd Wastewater in Coal-fired Power Plant Using Sulfur-containing Activated Carbon PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (965 download)

DOWNLOAD NOW!


Book Synopsis Evaluation of the Mercury Adsorption from Wfgd Wastewater in Coal-fired Power Plant Using Sulfur-containing Activated Carbon by : 邱馨瑾

Download or read book Evaluation of the Mercury Adsorption from Wfgd Wastewater in Coal-fired Power Plant Using Sulfur-containing Activated Carbon written by 邱馨瑾 and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Mercury Adsorption and Liberation Study

Download Mercury Adsorption and Liberation Study PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 136 pages
Book Rating : 4.:/5 (575 download)

DOWNLOAD NOW!


Book Synopsis Mercury Adsorption and Liberation Study by : Xiaobing Gao

Download or read book Mercury Adsorption and Liberation Study written by Xiaobing Gao and published by . This book was released on 2004 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Oxidation of Mercury in Products of Coal Combustion

Download Oxidation of Mercury in Products of Coal Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Oxidation of Mercury in Products of Coal Combustion by :

Download or read book Oxidation of Mercury in Products of Coal Combustion written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl2) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V2O5-WO3/TiO2 SCR catalyst with increasing HCl at low levels of HCl (

Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor

Download Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 51 pages
Book Rating : 4.:/5 (946 download)

DOWNLOAD NOW!


Book Synopsis Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor by :

Download or read book Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor written by and published by . This book was released on 2009 with total page 51 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and intraparticle diffusion. The Freundlich isotherm more accurately described in-flight mercury capture. Using these parameters, very little intraparticle diffusion was evident. Consistent with other data, smaller particles resulted in higher mercury uptake due to available surface area. Therefore, it is important to capture the particle size distribution in the model. At typical full-scale sorbent feed rates, the calculations underpredicted adsorption, suggesting that wall effects can account for as much as 50 percent of the removal, making it an important factor in entrained-mercury adsorption models.

Development of Mercury Control Technology for Coal-fired Systems

Download Development of Mercury Control Technology for Coal-fired Systems PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 12 pages
Book Rating : 4.:/5 (683 download)

DOWNLOAD NOW!


Book Synopsis Development of Mercury Control Technology for Coal-fired Systems by :

Download or read book Development of Mercury Control Technology for Coal-fired Systems written by and published by . This book was released on 1995 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emission of hazardous air pollutants (air toxics) from various industrial processes has emerged as a major environmental issue that was singled out for particular attention in the Clean Air Act Amendments of 1990. In particular, mercury emissions are the subject of several current EPA studies because of concerns over possible serious effects on human health. Some of those emissions originate in the combustion of coal, which contains trace amounts of mercury, and are likely to be the subject of control requirements in the relatively near future. Data collected by the Department of Energy (DOE) and the Electric Power Research Institute (EPRI) at operating electric-power plants have shown that conventional flue-gas cleanup (FGC) technologies are not very effective in controlling emissions of mercury in general, and are particularly poor at controlling emissions of elemental mercury. This paper gives an overview of research being conducted at Argonne National Laboratory on improving the capture of mercury in flue gas through the use of dry sorbents and/or wet scrubbers. The results and conclusions to date from the Argonne research on dry sorbents can be summarized as follows: lime hydrates, either regular or high-surface-area, are not effective in removing elemental mercury; mercury removals are enhanced by the addition of activated carbon; mercury removals with activated carbon decrease with increasing temperature, larger particle size, and decreasing mercury concentration in the gas; chemical pretreatment (e.g., with sulfur or CaCl2) can greatly increase the removal capacity of activated carbon; chemically treated mineral substrates have the potential to be developed into effective and economical mercury sorbents; sorbents treated with different chemicals respond in significantly different ways to changes in flue-gas temperature.

Removal of Mercury from Coal-combustion Flue-gas

Download Removal of Mercury from Coal-combustion Flue-gas PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (683 download)

DOWNLOAD NOW!


Book Synopsis Removal of Mercury from Coal-combustion Flue-gas by :

Download or read book Removal of Mercury from Coal-combustion Flue-gas written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion sources, including those using coal for fuel, contribute a significant fraction of total anthropogenic mercury emissions. Recent field studies have shown that current flue-gas cleanup (FGC) systems are relatively ineffective in controlling elemental mercury, which is a major component of the mercury emissions for many systems. Research at Argonne National Laboratory has been focused on techniques to enhance the capture of elemental mercury in existing FGC systems. For dry processes, these studies have included evaluation of activated carbons and investigation of sorbents based upon chemical pretreatment of low-cost mineral substrates. To enhance the ability of wet scrubbers to capture mercury, the studies have looked at the effects of improved mass transfer through both mechanical and chemical means, as well as the conversion of elemental mercury into more soluble species that can be easily absorbed.