Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Adjoint Expansions In Local Levy Models
Download Adjoint Expansions In Local Levy Models full books in PDF, epub, and Kindle. Read online Adjoint Expansions In Local Levy Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Category Theory in Context by : Emily Riehl
Download or read book Category Theory in Context written by Emily Riehl and published by Courier Dover Publications. This book was released on 2017-03-09 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1968 with total page 948 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Implicit Functions and Solution Mappings by : Asen L. Dontchev
Download or read book Implicit Functions and Solution Mappings written by Asen L. Dontchev and published by Springer. This book was released on 2014-06-18 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: The implicit function theorem is one of the most important theorems in analysis and its many variants are basic tools in partial differential equations and numerical analysis. This second edition of Implicit Functions and Solution Mappings presents an updated and more complete picture of the field by including solutions of problems that have been solved since the first edition was published, and places old and new results in a broader perspective. The purpose of this self-contained work is to provide a reference on the topic and to provide a unified collection of a number of results which are currently scattered throughout the literature. Updates to this edition include new sections in almost all chapters, new exercises and examples, updated commentaries to chapters and an enlarged index and references section.
Book Synopsis Optimal Transport by : Cédric Villani
Download or read book Optimal Transport written by Cédric Villani and published by Springer Science & Business Media. This book was released on 2008-10-26 with total page 970 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book’s value as a most welcome reference text on this subject.
Book Synopsis Option Pricing Models and Volatility Using Excel-VBA by : Fabrice D. Rouah
Download or read book Option Pricing Models and Volatility Using Excel-VBA written by Fabrice D. Rouah and published by John Wiley & Sons. This book was released on 2012-06-15 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive guide offers traders, quants, and students the tools and techniques for using advanced models for pricing options. The accompanying website includes data files, such as options prices, stock prices, or index prices, as well as all of the codes needed to use the option and volatility models described in the book. Praise for Option Pricing Models & Volatility Using Excel-VBA "Excel is already a great pedagogical tool for teaching option valuation and risk management. But the VBA routines in this book elevate Excel to an industrial-strength financial engineering toolbox. I have no doubt that it will become hugely successful as a reference for option traders and risk managers." —Peter Christoffersen, Associate Professor of Finance, Desautels Faculty of Management, McGill University "This book is filled with methodology and techniques on how to implement option pricing and volatility models in VBA. The book takes an in-depth look into how to implement the Heston and Heston and Nandi models and includes an entire chapter on parameter estimation, but this is just the tip of the iceberg. Everyone interested in derivatives should have this book in their personal library." —Espen Gaarder Haug, option trader, philosopher, and author of Derivatives Models on Models "I am impressed. This is an important book because it is the first book to cover the modern generation of option models, including stochastic volatility and GARCH." —Steven L. Heston, Assistant Professor of Finance, R.H. Smith School of Business, University of Maryland
Book Synopsis PDE and Martingale Methods in Option Pricing by : Andrea Pascucci
Download or read book PDE and Martingale Methods in Option Pricing written by Andrea Pascucci and published by Springer Science & Business Media. This book was released on 2011-04-15 with total page 727 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the mathematical, probabilistic and numerical methods used in the modern theory of option pricing. The text is designed for readers with a basic mathematical background. The first part contains a presentation of the arbitrage theory in discrete time. In the second part, the theories of stochastic calculus and parabolic PDEs are developed in detail and the classical arbitrage theory is analyzed in a Markovian setting by means of of PDEs techniques. After the martingale representation theorems and the Girsanov theory have been presented, arbitrage pricing is revisited in the martingale theory optics. General tools from PDE and martingale theories are also used in the analysis of volatility modeling. The book also contains an Introduction to Lévy processes and Malliavin calculus. The last part is devoted to the description of the numerical methods used in option pricing: Monte Carlo, binomial trees, finite differences and Fourier transform.
Book Synopsis Handbook of Nuclear Engineering by : Dan Gabriel Cacuci
Download or read book Handbook of Nuclear Engineering written by Dan Gabriel Cacuci and published by Springer Science & Business Media. This book was released on 2010-09-14 with total page 3701 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.
Book Synopsis Principles of Multiscale Modeling by : Weinan E
Download or read book Principles of Multiscale Modeling written by Weinan E and published by Cambridge University Press. This book was released on 2011-07-07 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic discussion of the fundamental principles, written by a leading contributor to the field.
Book Synopsis Mathematical Methods for Financial Markets by : Monique Jeanblanc
Download or read book Mathematical Methods for Financial Markets written by Monique Jeanblanc and published by Springer Science & Business Media. This book was released on 2009-10-03 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical finance has grown into a huge area of research which requires a large number of sophisticated mathematical tools. This book simultaneously introduces the financial methodology and the relevant mathematical tools in a style that is mathematically rigorous and yet accessible to practitioners and mathematicians alike. It interlaces financial concepts such as arbitrage opportunities, admissible strategies, contingent claims, option pricing and default risk with the mathematical theory of Brownian motion, diffusion processes, and Lévy processes. The first half of the book is devoted to continuous path processes whereas the second half deals with discontinuous processes. The extensive bibliography comprises a wealth of important references and the author index enables readers quickly to locate where the reference is cited within the book, making this volume an invaluable tool both for students and for those at the forefront of research and practice.
Book Synopsis Stochastic-Process Limits by : Ward Whitt
Download or read book Stochastic-Process Limits written by Ward Whitt and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "The material is self-contained, but it is technical and a solid foundation in probability and queuing theory is beneficial to prospective readers. [... It] is intended to be accessible to those with less background. This book is a must to researchers and graduate students interested in these areas." ISI Short Book Reviews
Book Synopsis Noncommutative Geometry and Particle Physics by : Walter D. van Suijlekom
Download or read book Noncommutative Geometry and Particle Physics written by Walter D. van Suijlekom and published by Springer. This book was released on 2014-07-21 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.
Author :International Union of Pure and Applied Chemistry. Physical and Biophysical Chemistry Division Publisher :Royal Society of Chemistry ISBN 13 :0854044337 Total Pages :240 pages Book Rating :4.8/5 (54 download)
Book Synopsis Quantities, Units and Symbols in Physical Chemistry by : International Union of Pure and Applied Chemistry. Physical and Biophysical Chemistry Division
Download or read book Quantities, Units and Symbols in Physical Chemistry written by International Union of Pure and Applied Chemistry. Physical and Biophysical Chemistry Division and published by Royal Society of Chemistry. This book was released on 2007 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Prepared by the IUPAC Physical Chemistry Division this definitive manual, now in its third edition, is designed to improve the exchange of scientific information among the readers in different disciplines and across different nations. This book has been systematically brought up to date and new sections added to reflect the increasing volume of scientific literature and terminology and expressions being used. The Third Edition reflects the experience of the contributors with the previous editions and the comments and feedback have been integrated into this essential resource. This edition has been compiled in machine-readable form and will be available online.
Book Synopsis A Course on Rough Paths by : Peter K. Friz
Download or read book A Course on Rough Paths written by Peter K. Friz and published by Springer Nature. This book was released on 2020-05-27 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: With many updates and additional exercises, the second edition of this book continues to provide readers with a gentle introduction to rough path analysis and regularity structures, theories that have yielded many new insights into the analysis of stochastic differential equations, and, most recently, stochastic partial differential equations. Rough path analysis provides the means for constructing a pathwise solution theory for stochastic differential equations which, in many respects, behaves like the theory of deterministic differential equations and permits a clean break between analytical and probabilistic arguments. Together with the theory of regularity structures, it forms a robust toolbox, allowing the recovery of many classical results without having to rely on specific probabilistic properties such as adaptedness or the martingale property. Essentially self-contained, this textbook puts the emphasis on ideas and short arguments, rather than aiming for the strongest possible statements. A typical reader will have been exposed to upper undergraduate analysis and probability courses, with little more than Itô-integration against Brownian motion required for most of the text. From the reviews of the first edition: "Can easily be used as a support for a graduate course ... Presents in an accessible way the unique point of view of two experts who themselves have largely contributed to the theory" - Fabrice Baudouin in the Mathematical Reviews "It is easy to base a graduate course on rough paths on this ... A researcher who carefully works her way through all of the exercises will have a very good impression of the current state of the art" - Nicolas Perkowski in Zentralblatt MATH
Book Synopsis Probability Theory and Stochastic Processes with Applications (Second Edition) by : Oliver Knill
Download or read book Probability Theory and Stochastic Processes with Applications (Second Edition) written by Oliver Knill and published by World Scientific Publishing Company. This book was released on 2017-01-31 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition has a unique approach that provides a broad and wide introduction into the fascinating area of probability theory. It starts on a fast track with the treatment of probability theory and stochastic processes by providing short proofs. The last chapter is unique as it features a wide range of applications in other fields like Vlasov dynamics of fluids, statistics of circular data, singular continuous random variables, Diophantine equations, percolation theory, random Schrödinger operators, spectral graph theory, integral geometry, computer vision, and processes with high risk.Many of these areas are under active investigation and this volume is highly suited for ambitious undergraduate students, graduate students and researchers.
Book Synopsis Topics in Optimal Transportation by : Cédric Villani
Download or read book Topics in Optimal Transportation written by Cédric Villani and published by American Mathematical Soc.. This book was released on 2021-08-25 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive introduction to the theory of mass transportation with its many—and sometimes unexpected—applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook. In 1781, Gaspard Monge defined the problem of “optimal transportation” (or the transferring of mass with the least possible amount of work), with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind. Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology. Originating from a graduate course, the present volume is intended for graduate students and researchers, covering both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.
Book Synopsis The Random Matrix Theory of the Classical Compact Groups by : Elizabeth S. Meckes
Download or read book The Random Matrix Theory of the Classical Compact Groups written by Elizabeth S. Meckes and published by Cambridge University Press. This book was released on 2019-08-01 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure. Classical and recent results are then presented in a digested, accessible form, including the following: results on the joint distributions of the entries; an extensive treatment of eigenvalue distributions, including the Weyl integration formula, moment formulae, and limit theorems and large deviations for the spectral measures; concentration of measure with applications both within random matrix theory and in high dimensional geometry; and results on characteristic polynomials with connections to the Riemann zeta function. This book will be a useful reference for researchers and an accessible introduction for students in related fields.
Book Synopsis A History of the Central Limit Theorem by : Hans Fischer
Download or read book A History of the Central Limit Theorem written by Hans Fischer and published by Springer Science & Business Media. This book was released on 2010-10-08 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study discusses the history of the central limit theorem and related probabilistic limit theorems from about 1810 through 1950. In this context the book also describes the historical development of analytical probability theory and its tools, such as characteristic functions or moments. The central limit theorem was originally deduced by Laplace as a statement about approximations for the distributions of sums of independent random variables within the framework of classical probability, which focused upon specific problems and applications. Making this theorem an autonomous mathematical object was very important for the development of modern probability theory.