Model Predictive Control

Download Model Predictive Control PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319248537
Total Pages : 387 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Model Predictive Control by : Basil Kouvaritakis

Download or read book Model Predictive Control written by Basil Kouvaritakis and published by Springer. This book was released on 2015-12-01 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides: extensive use of illustrative examples; sample problems; and discussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage. Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.

Robust Adaptive Control

Download Robust Adaptive Control PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486320723
Total Pages : 850 pages
Book Rating : 4.4/5 (863 download)

DOWNLOAD NOW!


Book Synopsis Robust Adaptive Control by : Petros Ioannou

Download or read book Robust Adaptive Control written by Petros Ioannou and published by Courier Corporation. This book was released on 2013-09-26 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.

Advances in Aerospace Guidance, Navigation and Control

Download Advances in Aerospace Guidance, Navigation and Control PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642382533
Total Pages : 773 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Advances in Aerospace Guidance, Navigation and Control by : Qiping Chu

Download or read book Advances in Aerospace Guidance, Navigation and Control written by Qiping Chu and published by Springer Science & Business Media. This book was released on 2013-11-18 with total page 773 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following the successful 1st CEAS (Council of European Aerospace Societies) Specialist Conference on Guidance, Navigation and Control (CEAS EuroGNC) held in Munich, Germany in 2011, Delft University of Technology happily accepted the invitation of organizing the 2nd CEAS EuroGNC in Delft, The Netherlands in 2013. The goal of the conference is to promote new advances in aerospace GNC theory and technologies for enhancing safety, survivability, efficiency, performance, autonomy and intelligence of aerospace systems using on-board sensing, computing and systems. A great push for new developments in GNC are the ever higher safety and sustainability requirements in aviation. Impressive progress was made in new research fields such as sensor and actuator fault detection and diagnosis, reconfigurable and fault tolerant flight control, online safe flight envelop prediction and protection, online global aerodynamic model identification, online global optimization and flight upset recovery. All of these challenges depend on new online solutions from on-board computing systems. Scientists and engineers in GNC have been developing model based, sensor based as well as knowledge based approaches aiming for highly robust, adaptive, nonlinear, intelligent and autonomous GNC systems. Although the papers presented at the conference and selected in this book could not possibly cover all of the present challenges in the GNC field, many of them have indeed been addressed and a wealth of new ideas, solutions and results were proposed and presented. For the 2nd CEAS Specialist Conference on Guidance, Navigation and Control the International Program Committee conducted a formal review process. Each paper was reviewed in compliance with good journal practice by at least two independent and anonymous reviewers. The papers published in this book were selected from the conference proceedings based on the results and recommendations from the reviewers.

Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016

Download Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319483080
Total Pages : 933 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016 by : Aboul Ella Hassanien

Download or read book Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016 written by Aboul Ella Hassanien and published by Springer. This book was released on 2016-10-20 with total page 933 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the proceedings of the 2nd International Conference on Advanced Intelligent Systems and Informatics (AISI2016), which took place in Cairo, Egypt during October 24–26, 2016. This international interdisciplinary conference, which highlighted essential research and developments in the field of informatics and intelligent systems, was organized by the Scientific Research Group in Egypt (SRGE) and sponsored by the IEEE Computational Intelligence Society (Egypt chapter) and the IEEE Robotics and Automation Society (Egypt Chapter). The book’s content is divided into four main sections: Intelligent Language Processing, Intelligent Systems, Intelligent Robotics Systems, and Informatics.

Robust and Adaptive Model Predictive Control of Nonlinear Systems

Download Robust and Adaptive Model Predictive Control of Nonlinear Systems PDF Online Free

Author :
Publisher : IET
ISBN 13 : 1849195528
Total Pages : 269 pages
Book Rating : 4.8/5 (491 download)

DOWNLOAD NOW!


Book Synopsis Robust and Adaptive Model Predictive Control of Nonlinear Systems by : Martin Guay

Download or read book Robust and Adaptive Model Predictive Control of Nonlinear Systems written by Martin Guay and published by IET. This book was released on 2015-11-13 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a novel approach to adaptive control and provides a sound theoretical background to designing robust adaptive control systems with guaranteed transient performance. It focuses on the more typical role of adaptation as a means of coping with uncertainties in the system model.

Large-Scale Inverse Problems and Quantification of Uncertainty

Download Large-Scale Inverse Problems and Quantification of Uncertainty PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119957583
Total Pages : 403 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Large-Scale Inverse Problems and Quantification of Uncertainty by : Lorenz Biegler

Download or read book Large-Scale Inverse Problems and Quantification of Uncertainty written by Lorenz Biegler and published by John Wiley & Sons. This book was released on 2011-06-24 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: Brings together the perspectives of researchers in areas of inverse problems and data assimilation. Assesses the current state-of-the-art and identify needs and opportunities for future research. Focuses on the computational methods used to analyze and simulate inverse problems. Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.

Handbook of Model Predictive Control

Download Handbook of Model Predictive Control PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319774891
Total Pages : 693 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Model Predictive Control by : Saša V. Raković

Download or read book Handbook of Model Predictive Control written by Saša V. Raković and published by Springer. This book was released on 2018-09-01 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.

Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021)

Download Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021) PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811694923
Total Pages : 3575 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021) by : Meiping Wu

Download or read book Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021) written by Meiping Wu and published by Springer Nature. This book was released on 2022-03-18 with total page 3575 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes original, peer-reviewed research papers from the ICAUS 2021, which offers a unique and interesting platform for scientists, engineers and practitioners throughout the world to present and share their most recent research and innovative ideas. The aim of the ICAUS 2021 is to stimulate researchers active in the areas pertinent to intelligent unmanned systems. The topics covered include but are not limited to Unmanned Aerial/Ground/Surface/Underwater Systems, Robotic, Autonomous Control/Navigation and Positioning/ Architecture, Energy and Task Planning and Effectiveness Evaluation Technologies, Artificial Intelligence Algorithm/Bionic Technology and Its Application in Unmanned Systems. The papers showcased here share the latest findings on Unmanned Systems, Robotics, Automation, Intelligent Systems, Control Systems, Integrated Networks, Modeling and Simulation. It makes the book a valuable asset for researchers, engineers, and university students alike.

Parameter Estimation and Adaptive Control for Nonlinear Servo Systems

Download Parameter Estimation and Adaptive Control for Nonlinear Servo Systems PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0443155755
Total Pages : 304 pages
Book Rating : 4.4/5 (431 download)

DOWNLOAD NOW!


Book Synopsis Parameter Estimation and Adaptive Control for Nonlinear Servo Systems by : Shubo Wang

Download or read book Parameter Estimation and Adaptive Control for Nonlinear Servo Systems written by Shubo Wang and published by Elsevier. This book was released on 2024-01-16 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parameter Estimation and Adaptive Control for Nonlinear Servo Systems presents the latest advances in observer-based control design, focusing on adaptive control for nonlinear systems such as adaptive neural network control, adaptive parameter estimation, and system identification. This book offers an array of new real-world applications in the field. Written by eminent scientists in the field of control theory, this book covers the latest advances in observer-based control design. It provides fundamentals, algorithms, and it discusses key applications in the fields of power systems, robotics and mechatronics, flight and automotive systems. - Presents a clear and concise introduction to the latest advances in parameter estimation and adaptive control with several concise applications for servo systems - Covers a wide range of applications usually not found in similar books, such as power systems, robotics, mechatronics, aeronautics, and industrial systems - Contains worked examples which make it ideal for advanced courses as well as for researchers starting to work in the field, particularly suitable for engineers wishing to enter the field quickly and efficiently

Learning-based Model Predictive Control with closed-loop guarantees

Download Learning-based Model Predictive Control with closed-loop guarantees PDF Online Free

Author :
Publisher : Logos Verlag Berlin GmbH
ISBN 13 : 383255744X
Total Pages : 172 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Learning-based Model Predictive Control with closed-loop guarantees by : Raffaele Soloperto

Download or read book Learning-based Model Predictive Control with closed-loop guarantees written by Raffaele Soloperto and published by Logos Verlag Berlin GmbH. This book was released on 2023-11-13 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: The performance of model predictive control (MPC) largely depends on the accuracy of the prediction model and of the constraints the system is subject to. However, obtaining an accurate knowledge of these elements might be expensive in terms of money and resources, if at all possible. In this thesis, we develop novel learning-based MPC frameworks that actively incentivize learning of the underlying system dynamics and of the constraints, while ensuring recursive feasibility, constraint satisfaction, and performance bounds for the closed-loop. In the first part, we focus on the case of inaccurate models, and analyze learning-based MPC schemes that include, in addition to the primary cost, a learning cost that aims at generating informative data by inducing excitation in the system. In particular, we first propose a nonlinear MPC framework that ensures desired performance bounds for the resulting closed-loop, and then we focus on linear systems subject to uncertain parameters and noisy output measurements. In order to ensure that the desired learning phase occurs in closed-loop operations, we then propose an MPC framework that is able to guarantee closed-loop learning of the controlled system. In the last part of the thesis, we investigate the scenario where the system is known but evolves in a partially unknown environment. In such a setup, we focus on a learning-based MPC scheme that incentivizes safe exploration if and only if this might yield to a performance improvement.

Advances in Mechanical Systems Dynamics

Download Advances in Mechanical Systems Dynamics PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039281887
Total Pages : 236 pages
Book Rating : 4.0/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Advances in Mechanical Systems Dynamics by : Alberto Doria

Download or read book Advances in Mechanical Systems Dynamics written by Alberto Doria and published by MDPI. This book was released on 2020-02-13 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern dynamics was established many centuries ago by Galileo and Newton before the beginning of the industrial era. Presently, we are in the presence of the fourth industrial revolution, and mechanical systems are increasingly being integrated with electronic, electrical, and fluidic systems. This trend is present not only in the industrial environment, which will soon be characterized by the cyber-physical systems of industry 4.0, but also in other environments like mobility, health and bio-engineering, food and natural resources, safety, and sustainable living. In this context, purely mechanical systems with quasi-static behavior will become less common and the state-of-the-art will soon be represented by integrated mechanical systems, which need accurate dynamic models to predict their behavior. Therefore, mechanical system dynamics are going to play an increasingly central role. Significant research efforts are needed to improve the identification of the mechanical properties of systems in order to develop models that take non-linearity into account, and to develop efficient simulation tools. This Special Issue aims at disseminating the latest research achievements, findings, and ideas in mechanical systems dynamics, with particular emphasis on applications that are strongly integrated with other systems and require a multi-physical approach.

Model-Based Predictive Control

Download Model-Based Predictive Control PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 135198859X
Total Pages : 323 pages
Book Rating : 4.3/5 (519 download)

DOWNLOAD NOW!


Book Synopsis Model-Based Predictive Control by : J.A. Rossiter

Download or read book Model-Based Predictive Control written by J.A. Rossiter and published by CRC Press. This book was released on 2017-07-12 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Predictive Control (MPC) has become a widely used methodology across all engineering disciplines, yet there are few books which study this approach. Until now, no book has addressed in detail all key issues in the field including apriori stability and robust stability results. Engineers and MPC researchers now have a volume that provides a complete overview of the theory and practice of MPC as it relates to process and control engineering. Model-Based Predictive Control, A Practical Approach, analyzes predictive control from its base mathematical foundation, but delivers the subject matter in a readable, intuitive style. The author writes in layman's terms, avoiding jargon and using a style that relies upon personal insight into practical applications. This detailed introduction to predictive control introduces basic MPC concepts and demonstrates how they are applied in the design and control of systems, experiments, and industrial processes. The text outlines how to model, provide robustness, handle constraints, ensure feasibility, and guarantee stability. It also details options in regard to algorithms, models, and complexity vs. performance issues.

Minimax Approaches to Robust Model Predictive Control

Download Minimax Approaches to Robust Model Predictive Control PDF Online Free

Author :
Publisher : Linköping University Electronic Press
ISBN 13 : 9173736228
Total Pages : 212 pages
Book Rating : 4.1/5 (737 download)

DOWNLOAD NOW!


Book Synopsis Minimax Approaches to Robust Model Predictive Control by : Johan Löfberg

Download or read book Minimax Approaches to Robust Model Predictive Control written by Johan Löfberg and published by Linköping University Electronic Press. This book was released on 2003-04-11 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Controlling a system with control and state constraints is one of the most important problems in control theory, but also one of the most challenging. Another important but just as demanding topic is robustness against uncertainties in a controlled system. One of the most successful approaches, both in theory and practice, to control constrained systems is model predictive control (MPC). The basic idea in MPC is to repeatedly solve optimization problems on-line to find an optimal input to the controlled system. In recent years, much effort has been spent to incorporate the robustness problem into this framework. The main part of the thesis revolves around minimax formulations of MPC for uncertain constrained linear discrete-time systems. A minimax strategy in MPC means that worst-case performance with respect to uncertainties is optimized. Unfortunately, many minimax MPC formulations yield intractable optimization problems with exponential complexity. Minimax algorithms for a number of uncertainty models are derived in the thesis. These include systems with bounded external additive disturbances, systems with uncertain gain, and systems described with linear fractional transformations. The central theme in the different algorithms is semidefinite relaxations. This means that the minimax problems are written as uncertain semidefinite programs, and then conservatively approximated using robust optimization theory. The result is an optimization problem with polynomial complexity. The use of semidefinite relaxations enables a framework that allows extensions of the basic algorithms, such as joint minimax control and estimation, and approx- imation of closed-loop minimax MPC using a convex programming framework. Additional topics include development of an efficient optimization algorithm to solve the resulting semidefinite programs and connections between deterministic minimax MPC and stochastic risk-sensitive control. The remaining part of the thesis is devoted to stability issues in MPC for continuous-time nonlinear unconstrained systems. While stability of MPC for un-constrained linear systems essentially is solved with the linear quadratic controller, no such simple solution exists in the nonlinear case. It is shown how tools from modern nonlinear control theory can be used to synthesize finite horizon MPC controllers with guaranteed stability, and more importantly, how some of the tech- nical assumptions in the literature can be dispensed with by using a slightly more complex controller.

Robust Model Predictive Control for Large-Scale Manufacturing Systems subject to Uncertainties

Download Robust Model Predictive Control for Large-Scale Manufacturing Systems subject to Uncertainties PDF Online Free

Author :
Publisher : kassel university press GmbH
ISBN 13 : 3737604487
Total Pages : 251 pages
Book Rating : 4.7/5 (376 download)

DOWNLOAD NOW!


Book Synopsis Robust Model Predictive Control for Large-Scale Manufacturing Systems subject to Uncertainties by : Jens Tonne

Download or read book Robust Model Predictive Control for Large-Scale Manufacturing Systems subject to Uncertainties written by Jens Tonne and published by kassel university press GmbH. This book was released on 2018-01-19 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large scale manufacturing systems are often run with constant process parameters although continuous and abrupt disturbances influence the process. To reduce quality variations and scrap, a closed-loop control of the process variables becomes indispensable. In this thesis, a modeling and control framework for multistage manufacturing systems is developed, in which the systems are subject to abrupt faults, such as component defects, and continuous disturbances. In this context, three main topics are considered: the development of a modeling framework, the design of robust distributed controllers, and the application of both to the models of a real hot stamping line. The focus of all topics is on the control of the product properties considering the available knowledge of faults and disturbances.

Predictive Control for Linear and Hybrid Systems

Download Predictive Control for Linear and Hybrid Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107016886
Total Pages : 447 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Predictive Control for Linear and Hybrid Systems by : Francesco Borrelli

Download or read book Predictive Control for Linear and Hybrid Systems written by Francesco Borrelli and published by Cambridge University Press. This book was released on 2017-06-22 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).

Intelligent Systems and Networks

Download Intelligent Systems and Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819947251
Total Pages : 703 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Systems and Networks by : Thi Dieu Linh Nguyen

Download or read book Intelligent Systems and Networks written by Thi Dieu Linh Nguyen and published by Springer Nature. This book was released on with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Adaptive Control Tutorial

Download Adaptive Control Tutorial PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898716152
Total Pages : 401 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Adaptive Control Tutorial by : Petros Ioannou

Download or read book Adaptive Control Tutorial written by Petros Ioannou and published by SIAM. This book was released on 2006-01-01 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed to meet the needs of a wide audience without sacrificing mathematical depth and rigor, Adaptive Control Tutorial presents the design, analysis, and application of a wide variety of algorithms that can be used to manage dynamical systems with unknown parameters. Its tutorial-style presentation of the fundamental techniques and algorithms in adaptive control make it suitable as a textbook. Adaptive Control Tutorial is designed to serve the needs of three distinct groups of readers: engineers and students interested in learning how to design, simulate, and implement parameter estimators and adaptive control schemes without having to fully understand the analytical and technical proofs; graduate students who, in addition to attaining the aforementioned objectives, also want to understand the analysis of simple schemes and get an idea of the steps involved in more complex proofs; and advanced students and researchers who want to study and understand the details of long and technical proofs with an eye toward pursuing research in adaptive control or related topics. The authors achieve these multiple objectives by enriching the book with examples demonstrating the design procedures and basic analysis steps and by detailing their proofs in both an appendix and electronically available supplementary material; online examples are also available. A solution manual for instructors can be obtained by contacting SIAM or the authors. Preface; Acknowledgements; List of Acronyms; Chapter 1: Introduction; Chapter 2: Parametric Models; Chapter 3: Parameter Identification: Continuous Time; Chapter 4: Parameter Identification: Discrete Time; Chapter 5: Continuous-Time Model Reference Adaptive Control; Chapter 6: Continuous-Time Adaptive Pole Placement Control; Chapter 7: Adaptive Control for Discrete-Time Systems; Chapter 8: Adaptive Control of Nonlinear Systems; Appendix; Bibliography; Index