Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A Monotonicity Property Of Logarithmic Sobolev Inequalities
Download A Monotonicity Property Of Logarithmic Sobolev Inequalities full books in PDF, epub, and Kindle. Read online A Monotonicity Property Of Logarithmic Sobolev Inequalities ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis An Initiation to Logarithmic Sobolev Inequalities by : Gilles Royer
Download or read book An Initiation to Logarithmic Sobolev Inequalities written by Gilles Royer and published by American Mathematical Soc.. This book was released on 2007 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to logarithmic Sobolev inequalities with some important applications to mathematical statistical physics. Royer begins by gathering and reviewing the necessary background material on selfadjoint operators, semigroups, Kolmogorov diffusion processes, and solutions of stochastic differential equations.
Book Synopsis Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincare Conjecture by : Qi S. Zhang
Download or read book Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincare Conjecture written by Qi S. Zhang and published by CRC Press. This book was released on 2010-07-02 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on Sobolev inequalities and their applications to analysis on manifolds and Ricci flow, Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincare Conjecture introduces the field of analysis on Riemann manifolds and uses the tools of Sobolev imbedding and heat kernel estimates to study Ricci flows, especially with surgeries. The
Author :Catherine Donati-Martin Publisher :Springer Science & Business Media ISBN 13 :3642017622 Total Pages :457 pages Book Rating :4.6/5 (42 download)
Book Synopsis Séminaire de Probabilités XLII by : Catherine Donati-Martin
Download or read book Séminaire de Probabilités XLII written by Catherine Donati-Martin and published by Springer Science & Business Media. This book was released on 2009-06-29 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: The tradition of specialized courses in the Séminaires de Probabilités is continued with A. Lejay's Another introduction to rough paths. Other topics from this 42nd volume range from the interface between analysis and probability to special processes, Lévy processes and Lévy systems, branching, penalization, representation of Gaussian processes, filtrations and quantum probability.
Book Synopsis Convexity and Concentration by : Eric Carlen
Download or read book Convexity and Concentration written by Eric Carlen and published by Springer. This book was released on 2017-04-20 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents some of the research topics discussed at the 2014-2015 Annual Thematic Program Discrete Structures: Analysis and Applications at the Institute of Mathematics and its Applications during the Spring 2015 where geometric analysis, convex geometry and concentration phenomena were the focus. Leading experts have written surveys of research problems, making state of the art results more conveniently and widely available. The volume is organized into two parts. Part I contains those contributions that focus primarily on problems motivated by probability theory, while Part II contains those contributions that focus primarily on problems motivated by convex geometry and geometric analysis. This book will be of use to those who research convex geometry, geometric analysis and probability directly or apply such methods in other fields.
Book Synopsis Geometric Aspects of Functional Analysis by : Bo'az Klartag
Download or read book Geometric Aspects of Functional Analysis written by Bo'az Klartag and published by Springer Nature. This book was released on 2020-06-20 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain's slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn–Minkowski theory. One of the major current research directions addressed is the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Science and to Differential Geometry are also discussed.
Book Synopsis Analysis and Geometry of Markov Diffusion Operators by : Dominique Bakry
Download or read book Analysis and Geometry of Markov Diffusion Operators written by Dominique Bakry and published by Springer Science & Business Media. This book was released on 2013-11-18 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.
Book Synopsis Topics in Optimal Transportation by : Cédric Villani
Download or read book Topics in Optimal Transportation written by Cédric Villani and published by American Mathematical Soc.. This book was released on 2021-08-25 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive introduction to the theory of mass transportation with its many—and sometimes unexpected—applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook. In 1781, Gaspard Monge defined the problem of “optimal transportation” (or the transferring of mass with the least possible amount of work), with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind. Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology. Originating from a graduate course, the present volume is intended for graduate students and researchers, covering both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.
Book Synopsis Poincare's Legacies, Part II by : Terence Tao
Download or read book Poincare's Legacies, Part II written by Terence Tao and published by American Mathematical Soc.. This book was released on 2009 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on geometry, topology, and partial differential equations. This book discusses a variety of topics, including expository articles on topics such as gauge theory, the Kakeya needle problem, and the Black-Scholes equation. It is suitable for graduate students and research mathematicians interested in broad exposure to mathematical topics.
Book Synopsis Asymptotic Geometric Analysis, Part II by : Shiri Artstein-Avidan
Download or read book Asymptotic Geometric Analysis, Part II written by Shiri Artstein-Avidan and published by American Mathematical Society. This book was released on 2021-12-13 with total page 645 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a continuation of Asymptotic Geometric Analysis, Part I, which was published as volume 202 in this series. Asymptotic geometric analysis studies properties of geometric objects, such as normed spaces, convex bodies, or convex functions, when the dimensions of these objects increase to infinity. The asymptotic approach reveals many very novel phenomena which influence other fields in mathematics, especially where a large data set is of main concern, or a number of parameters which becomes uncontrollably large. One of the important features of this new theory is in developing tools which allow studying high parametric families. Among the topics covered in the book are measure concentration, isoperimetric constants of log-concave measures, thin-shell estimates, stochastic localization, the geometry of Gaussian measures, volume inequalities for convex bodies, local theory of Banach spaces, type and cotype, the Banach-Mazur compactum, symmetrizations, restricted invertibility, and functional versions of geometric notions and inequalities.
Book Synopsis Optimal Regularity and the Free Boundary in the Parabolic Signorini Problem by : Donatella Daniell
Download or read book Optimal Regularity and the Free Boundary in the Parabolic Signorini Problem written by Donatella Daniell and published by American Mathematical Soc.. This book was released on 2017-09-25 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors give a comprehensive treatment of the parabolic Signorini problem based on a generalization of Almgren's monotonicity of the frequency. This includes the proof of the optimal regularity of solutions, classification of free boundary points, the regularity of the regular set and the structure of the singular set.
Book Synopsis Advances in Mathematical Sciences and Applications by :
Download or read book Advances in Mathematical Sciences and Applications written by and published by . This book was released on 2008 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Stochastic Inequalities and Applications by : Evariste Giné
Download or read book Stochastic Inequalities and Applications written by Evariste Giné and published by Birkhäuser. This book was released on 2012-12-06 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concentration inequalities, which express the fact that certain complicated random variables are almost constant, have proven of utmost importance in many areas of probability and statistics. This volume contains refined versions of these inequalities, and their relationship to many applications particularly in stochastic analysis. The broad range and the high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers in the above areas.
Book Synopsis Special Functions, Partial Differential Equations, and Harmonic Analysis by : Constantine Georgakis
Download or read book Special Functions, Partial Differential Equations, and Harmonic Analysis written by Constantine Georgakis and published by Springer. This book was released on 2014-11-07 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of papers presented at the conference in honor of Calixto P. Calderón by his friends, colleagues, and students is intended to make the mathematical community aware of his important scholarly and research contributions in contemporary Harmonic Analysis and Mathematical Models applied to Biology and Medicine, and to stimulate further research in the future in this area of pure and applied mathematics.
Book Synopsis Stochastic Processes, Physics And Geometry by : Sergio Albeverio
Download or read book Stochastic Processes, Physics And Geometry written by Sergio Albeverio and published by World Scientific. This book was released on 1990-10-15 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Markov Processes, Semigroups and Generators by : Vassili N. Kolokoltsov
Download or read book Markov Processes, Semigroups and Generators written by Vassili N. Kolokoltsov and published by Walter de Gruyter. This book was released on 2011-03-29 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov processes represent a universal model for a large variety of real life random evolutions. The wide flow of new ideas, tools, methods and applications constantly pours into the ever-growing stream of research on Markov processes that rapidly spreads over new fields of natural and social sciences, creating new streamlined logical paths to its turbulent boundary. Even if a given process is not Markov, it can be often inserted into a larger Markov one (Markovianization procedure) by including the key historic parameters into the state space. This monograph gives a concise, but systematic and self-contained, exposition of the essentials of Markov processes, together with recent achievements, working from the "physical picture" - a formal pre-generator, and stressing the interplay between probabilistic (stochastic differential equations) and analytic (semigroups) tools. The book will be useful to students and researchers. Part I can be used for a one-semester course on Brownian motion, Lévy and Markov processes, or on probabilistic methods for PDE. Part II mainly contains the author's research on Markov processes. From the contents: Tools from Probability and Analysis Brownian motion Markov processes and martingales SDE, ψDE and martingale problems Processes in Euclidean spaces Processes in domains with a boundary Heat kernels for stable-like processes Continuous-time random walks and fractional dynamics Complex chains and Feynman integral
Book Synopsis Chemotaxis, Reaction, Network: Mathematics For Self-organization by : Takashi Suzuki
Download or read book Chemotaxis, Reaction, Network: Mathematics For Self-organization written by Takashi Suzuki and published by World Scientific. This book was released on 2018-07-27 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to recent mathematical theories on the bottom up self-organization observed in closed and isolated thermo-dynamical systems. Its main features include:
Book Synopsis Regularity Theory for Mean Curvature Flow by : Klaus Ecker
Download or read book Regularity Theory for Mean Curvature Flow written by Klaus Ecker and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow. * Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.