Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A Density Property For Fractional Weighted Sobolev Spaces
Download A Density Property For Fractional Weighted Sobolev Spaces full books in PDF, epub, and Kindle. Read online A Density Property For Fractional Weighted Sobolev Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Elliptic and Parabolic Equations Involving the Hardy-Leray Potential by : Ireneo Peral Alonso
Download or read book Elliptic and Parabolic Equations Involving the Hardy-Leray Potential written by Ireneo Peral Alonso and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-02-22 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scientific literature on the Hardy-Leray inequality, also known as the uncertainty principle, is very extensive and scattered. The Hardy-Leray potential shows an extreme spectral behavior and a peculiar influence on diffusion problems, both stationary and evolutionary. In this book, a big part of the scattered knowledge about these different behaviors is collected in a unified and comprehensive presentation.
Book Synopsis Fractional Elliptic Problems with Critical Growth in the Whole of $\R^n$ by : Serena Dipierro
Download or read book Fractional Elliptic Problems with Critical Growth in the Whole of $\R^n$ written by Serena Dipierro and published by Springer. This book was released on 2017-03-14 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes are devoted to the analysis of a nonlocal equation in the whole of Euclidean space. In studying this equation, all the necessary material is introduced in the most self-contained way possible, giving precise references to the literature when necessary. The results presented are original, but no particular prerequisite or knowledge of the previous literature is needed to read this text. The work is accessible to a wide audience and can also serve as introductory research material on the topic of nonlocal nonlinear equations.
Author :William Charles Hector McLean Publisher :Cambridge University Press ISBN 13 :9780521663755 Total Pages :376 pages Book Rating :4.6/5 (637 download)
Book Synopsis Strongly Elliptic Systems and Boundary Integral Equations by : William Charles Hector McLean
Download or read book Strongly Elliptic Systems and Boundary Integral Equations written by William Charles Hector McLean and published by Cambridge University Press. This book was released on 2000-01-28 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2000 book provided the first detailed exposition of the mathematical theory of boundary integral equations of the first kind on non-smooth domains.
Book Synopsis Lebesgue and Sobolev Spaces with Variable Exponents by : Lars Diening
Download or read book Lebesgue and Sobolev Spaces with Variable Exponents written by Lars Diening and published by Springer. This book was released on 2011-03-29 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
Book Synopsis Fractional Deterministic and Stochastic Calculus by : Giacomo Ascione
Download or read book Fractional Deterministic and Stochastic Calculus written by Giacomo Ascione and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-12-31 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Sobolev Spaces in Mathematics I by : Vladimir Maz'ya
Download or read book Sobolev Spaces in Mathematics I written by Vladimir Maz'ya and published by Springer Science & Business Media. This book was released on 2008-12-02 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume mark’s the centenary of the birth of the outstanding mathematician of the 20th century, Sergey Sobolev. It includes new results on the latest topics of the theory of Sobolev spaces, partial differential equations, analysis and mathematical physics.
Book Synopsis Concentration Compactness by : Kyril Tintarev
Download or read book Concentration Compactness written by Kyril Tintarev and published by Imperial College Press. This book was released on 2007 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concentration compactness is an important method in mathematical analysis which has been widely used in mathematical research for two decades. This unique volume fulfills the need for a source book that usefully combines a concise formulation of the method, a range of important applications to variational problems, and background material concerning manifolds, non-compact transformation groups and functional spaces. Highlighting the role in functional analysis of invariance and, in particular, of non-compact transformation groups, the book uses the same building blocks, such as partitions of domain and partitions of range, relative to transformation groups, in the proofs of energy inequalities and in the weak convergence lemmas.
Book Synopsis Weighted Sobolev Spaces by : Alois Kufner
Download or read book Weighted Sobolev Spaces written by Alois Kufner and published by . This book was released on 1985-07-23 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic account of the subject, this book deals with properties and applications of the Sobolev spaces with weights, the weight function being dependent on the distance of a point of the definition domain from the boundary of the domain or from its parts. After an introduction of definitions, examples and auxilliary results, it describes the study of properties of Sobolev spaces with power-type weights, and analogous problems for weights of a more general type. The concluding chapter addresses applications of weighted spaces to the solution of the Dirichlet problem for an elliptic linear differential operator.
Book Synopsis A First Course in Sobolev Spaces by : Giovanni Leoni
Download or read book A First Course in Sobolev Spaces written by Giovanni Leoni and published by American Mathematical Soc.. This book was released on 2009 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev spaces are a fundamental tool in the modern study of partial differential equations. In this book, Leoni takes a novel approach to the theory by looking at Sobolev spaces as the natural development of monotone, absolutely continuous, and BV functions of one variable. In this way, the majority of the text can be read without the prerequisite of a course in functional analysis. The first part of this text is devoted to studying functions of one variable. Several of the topics treated occur in courses on real analysis or measure theory. Here, the perspective emphasizes their applications to Sobolev functions, giving a very different flavor to the treatment. This elementary start to the book makes it suitable for advanced undergraduates or beginning graduate students. Moreover, the one-variable part of the book helps to develop a solid background that facilitates the reading and understanding of Sobolev functions of several variables. The second part of the book is more classical, although it also contains some recent results. Besides the standard results on Sobolev functions, this part of the book includes chapters on BV functions, symmetric rearrangement, and Besov spaces. The book contains over 200 exercises.
Book Synopsis Theory and Practice of Finite Elements by : Alexandre Ern
Download or read book Theory and Practice of Finite Elements written by Alexandre Ern and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.
Download or read book Mathematical Reviews written by and published by . This book was released on 2005 with total page 1884 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Variable Lebesgue Spaces by : David V. Cruz-Uribe
Download or read book Variable Lebesgue Spaces written by David V. Cruz-Uribe and published by Springer Science & Business Media. This book was released on 2013-02-12 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.
Book Synopsis The Fractional Laplacian by : C. Pozrikidis
Download or read book The Fractional Laplacian written by C. Pozrikidis and published by CRC Press. This book was released on 2018-09-03 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fractional Laplacian, also called the Riesz fractional derivative, describes an unusual diffusion process associated with random excursions. The Fractional Laplacian explores applications of the fractional Laplacian in science, engineering, and other areas where long-range interactions and conceptual or physical particle jumps resulting in an irregular diffusive or conductive flux are encountered. Presents the material at a level suitable for a broad audience of scientists and engineers with rudimentary background in ordinary differential equations and integral calculus Clarifies the concept of the fractional Laplacian for functions in one, two, three, or an arbitrary number of dimensions defined over the entire space, satisfying periodicity conditions, or restricted to a finite domain Covers physical and mathematical concepts as well as detailed mathematical derivations Develops a numerical framework for solving differential equations involving the fractional Laplacian and presents specific algorithms accompanied by numerical results in one, two, and three dimensions Discusses viscous flow and physical examples from scientific and engineering disciplines Written by a prolific author well known for his contributions in fluid mechanics, biomechanics, applied mathematics, scientific computing, and computer science, the book emphasizes fundamental ideas and practical numerical computation. It includes original material and novel numerical methods.
Book Synopsis Reviews in Functional Analysis, 1980-86 by :
Download or read book Reviews in Functional Analysis, 1980-86 written by and published by . This book was released on 1989 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: These four volumes contain the almost 12,000 reviews appearing in Mathematical Reviews under primary or secondary subject classification 46, Functional Analysis, between 1980 and 1986.
Book Synopsis Fractional Differential Equations by : Anatoly Kochubei
Download or read book Fractional Differential Equations written by Anatoly Kochubei and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-02-19 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.
Book Synopsis Differentiable Measures and the Malliavin Calculus by : Vladimir Igorevich Bogachev
Download or read book Differentiable Measures and the Malliavin Calculus written by Vladimir Igorevich Bogachev and published by American Mathematical Soc.. This book was released on 2010-07-21 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the reader with the principal concepts and results related to differential properties of measures on infinite dimensional spaces. In the finite dimensional case such properties are described in terms of densities of measures with respect to Lebesgue measure. In the infinite dimensional case new phenomena arise. For the first time a detailed account is given of the theory of differentiable measures, initiated by S. V. Fomin in the 1960s; since then the method has found many various important applications. Differentiable properties are described for diverse concrete classes of measures arising in applications, for example, Gaussian, convex, stable, Gibbsian, and for distributions of random processes. Sobolev classes for measures on finite and infinite dimensional spaces are discussed in detail. Finally, we present the main ideas and results of the Malliavin calculus--a powerful method to study smoothness properties of the distributions of nonlinear functionals on infinite dimensional spaces with measures. The target readership includes mathematicians and physicists whose research is related to measures on infinite dimensional spaces, distributions of random processes, and differential equations in infinite dimensional spaces. The book includes an extensive bibliography on the subject.
Book Synopsis The obstacle problem by : Luis Angel Caffarelli
Download or read book The obstacle problem written by Luis Angel Caffarelli and published by Edizioni della Normale. This book was released on 1999-10-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.