Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A Course In Ordinary Differential Equations
Download A Course In Ordinary Differential Equations full books in PDF, epub, and Kindle. Read online A Course In Ordinary Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis A Course in Ordinary Differential Equations by : Stephen A. Wirkus
Download or read book A Course in Ordinary Differential Equations written by Stephen A. Wirkus and published by CRC Press. This book was released on 2006-10-23 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first contemporary textbook on ordinary differential equations (ODEs) to include instructions on MATLAB, Mathematica, and Maple A Course in Ordinary Differential Equations focuses on applications and methods of analytical and numerical solutions, emphasizing approaches used in the typical engineering, physics, or mathematics student's field o
Book Synopsis A Course in Ordinary Differential Equations by : Bindhyachal Rai
Download or read book A Course in Ordinary Differential Equations written by Bindhyachal Rai and published by CRC Press. This book was released on 2002 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed as a text for both under and postgraduate students of mathematics and engineering, A Course in Ordinary Differential Equations deals with theory and methods of solutions as well as applications of ordinary differential equations. The treatment is lucid and gives a detailed account of Laplace transforms and their applications, Legendre and Bessel functions, and covers all the important numerical methods for differential equations.
Book Synopsis A Short Course in Ordinary Differential Equations by : Qingkai Kong
Download or read book A Short Course in Ordinary Differential Equations written by Qingkai Kong and published by Springer. This book was released on 2014-10-21 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a rigorous treatment of the basic qualitative theory of ordinary differential equations, at the beginning graduate level. Designed as a flexible one-semester course but offering enough material for two semesters, A Short Course covers core topics such as initial value problems, linear differential equations, Lyapunov stability, dynamical systems and the Poincaré—Bendixson theorem, and bifurcation theory, and second-order topics including oscillation theory, boundary value problems, and Sturm—Liouville problems. The presentation is clear and easy-to-understand, with figures and copious examples illustrating the meaning of and motivation behind definitions, hypotheses, and general theorems. A thoughtfully conceived selection of exercises together with answers and hints reinforce the reader's understanding of the material. Prerequisites are limited to advanced calculus and the elementary theory of differential equations and linear algebra, making the text suitable for senior undergraduates as well.
Book Synopsis A First Course in Ordinary Differential Equations by : Suman Kumar Tumuluri
Download or read book A First Course in Ordinary Differential Equations written by Suman Kumar Tumuluri and published by CRC Press. This book was released on 2021-03-24 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: A First course in Ordinary Differential Equations provides a detailed introduction to the subject focusing on analytical methods to solve ODEs and theoretical aspects of analyzing them when it is difficult/not possible to find their solutions explicitly. This two-fold treatment of the subject is quite handy not only for undergraduate students in mathematics but also for physicists, engineers who are interested in understanding how various methods to solve ODEs work. More than 300 end-of-chapter problems with varying difficulty are provided so that the reader can self examine their understanding of the topics covered in the text. Most of the definitions and results used from subjects like real analysis, linear algebra are stated clearly in the book. This enables the book to be accessible to physics and engineering students also. Moreover, sufficient number of worked out examples are presented to illustrate every new technique introduced in this book. Moreover, the author elucidates the importance of various hypotheses in the results by providing counter examples. Features Offers comprehensive coverage of all essential topics required for an introductory course in ODE. Emphasizes on both computation of solutions to ODEs as well as the theoretical concepts like well-posedness, comparison results, stability etc. Systematic presentation of insights of the nature of the solutions to linear/non-linear ODEs. Special attention on the study of asymptotic behavior of solutions to autonomous ODEs (both for scalar case and 2✕2 systems). Sufficient number of examples are provided wherever a notion is introduced. Contains a rich collection of problems. This book serves as a text book for undergraduate students and a reference book for scientists and engineers. Broad coverage and clear presentation of the material indeed appeals to the readers. Dr. Suman K. Tumuluri has been working in University of Hyderabad, India, for 11 years and at present he is an associate professor. His research interests include applications of partial differential equations in population dynamics and fluid dynamics.
Book Synopsis Second Course in Ordinary Differential Equations for Scientists and Engineers by : Mayer Humi
Download or read book Second Course in Ordinary Differential Equations for Scientists and Engineers written by Mayer Humi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world abounds with introductory texts on ordinary differential equations and rightly so in view of the large number of students taking a course in this subject. However, for some time now there is a growing need for a junior-senior level book on the more advanced topics of differential equations. In fact the number of engineering and science students requiring a second course in these topics has been increasing. This book is an outgrowth of such courses taught by us in the last ten years at Worcester Polytechnic Institute. The book attempts to blend mathematical theory with nontrivial applications from varipus disciplines. It does not contain lengthy proofs of mathemati~al theorems as this would be inappropriate for its intended audience. Nevertheless, in each case we motivated these theorems and their practical use through examples and in some cases an "intuitive proof" is included. In view of this approach the book could be used also by aspiring mathematicians who wish to obtain an overview of the more advanced aspects of differential equations and an insight into some of its applications. We have included a wide range of topics in order to afford the instructor the flexibility in designing such a course according to the needs of the students. Therefore, this book contains more than enough material for a one semester course.
Book Synopsis A Second Course in Elementary Differential Equations by : Paul Waltman
Download or read book A Second Course in Elementary Differential Equations written by Paul Waltman and published by Elsevier. This book was released on 2014-05-10 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Second Course in Elementary Differential Equations deals with norms, metric spaces, completeness, inner products, and an asymptotic behavior in a natural setting for solving problems in differential equations. The book reviews linear algebra, constant coefficient case, repeated eigenvalues, and the employment of the Putzer algorithm for nondiagonalizable coefficient matrix. The text describes, in geometrical and in an intuitive approach, Liapunov stability, qualitative behavior, the phase plane concepts, polar coordinate techniques, limit cycles, the Poincaré-Bendixson theorem. The book explores, in an analytical procedure, the existence and uniqueness theorems, metric spaces, operators, contraction mapping theorem, and initial value problems. The contraction mapping theorem concerns operators that map a given metric space into itself, in which, where an element of the metric space M, an operator merely associates with it a unique element of M. The text also tackles inner products, orthogonality, bifurcation, as well as linear boundary value problems, (particularly the Sturm-Liouville problem). The book is intended for mathematics or physics students engaged in ordinary differential equations, and for biologists, engineers, economists, or chemists who need to master the prerequisites for a graduate course in mathematics.
Book Synopsis Differential Equations by : H. S. Bear
Download or read book Differential Equations written by H. S. Bear and published by Courier Corporation. This book was released on 2013-10-30 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: First-rate introduction for undergraduates examines first order equations, complex-valued solutions, linear differential operators, the Laplace transform, Picard's existence theorem, and much more. Includes problems and solutions.
Book Synopsis Ordinary Differential Equations and Stability Theory: by : David A. Sanchez
Download or read book Ordinary Differential Equations and Stability Theory: written by David A. Sanchez and published by Courier Dover Publications. This book was released on 2019-09-18 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.
Book Synopsis Ordinary Differential Equations by : Morris Tenenbaum
Download or read book Ordinary Differential Equations written by Morris Tenenbaum and published by Courier Corporation. This book was released on 1985-10-01 with total page 852 pages. Available in PDF, EPUB and Kindle. Book excerpt: Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
Book Synopsis Ordinary Differential Equations by : Luis Barreira
Download or read book Ordinary Differential Equations written by Luis Barreira and published by American Mathematical Society. This book was released on 2023-05-17 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive introduction to the qualitative theory of ordinary differential equations. It includes a discussion of the existence and uniqueness of solutions, phase portraits, linear equations, stability theory, hyperbolicity and equations in the plane. The emphasis is primarily on results and methods that allow one to analyze qualitative properties of the solutions without solving the equations explicitly. The text includes numerous examples that illustrate in detail the new concepts and results as well as exercises at the end of each chapter. The book is also intended to serve as a bridge to important topics that are often left out of a course on ordinary differential equations. In particular, it provides brief introductions to bifurcation theory, center manifolds, normal forms and Hamiltonian systems.
Book Synopsis A First Course in Differential Equations by : J. David Logan
Download or read book A First Course in Differential Equations written by J. David Logan and published by Springer Science & Business Media. This book was released on 2006-05-20 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Therearemanyexcellenttextsonelementarydi?erentialequationsdesignedfor the standard sophomore course. However, in spite of the fact that most courses are one semester in length, the texts have evolved into calculus-like pres- tations that include a large collection of methods and applications, packaged with student manuals, and Web-based notes, projects, and supplements. All of this comes in several hundred pages of text with busy formats. Most students do not have the time or desire to read voluminous texts and explore internet supplements. The format of this di?erential equations book is di?erent; it is a one-semester, brief treatment of the basic ideas, models, and solution methods. Itslimitedcoverageplacesitsomewherebetweenanoutlineandadetailedte- book. I have tried to write concisely, to the point, and in plain language. Many worked examples and exercises are included. A student who works through this primer will have the tools to go to the next level in applying di?erential eq- tions to problems in engineering, science, and applied mathematics. It can give some instructors, who want more concise coverage, an alternative to existing texts.
Book Synopsis A Course in Differential Equations with Boundary Value Problems by : Stephen A. Wirkus
Download or read book A Course in Differential Equations with Boundary Value Problems written by Stephen A. Wirkus and published by CRC Press. This book was released on 2017-01-24 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Course in Differential Equations with Boundary Value Problems, 2nd Edition adds additional content to the author’s successful A Course on Ordinary Differential Equations, 2nd Edition. This text addresses the need when the course is expanded. The focus of the text is on applications and methods of solution, both analytical and numerical, with emphasis on methods used in the typical engineering, physics, or mathematics student’s field of study. The text provides sufficient problems so that even the pure math major will be sufficiently challenged. The authors offer a very flexible text to meet a variety of approaches, including a traditional course on the topic. The text can be used in courses when partial differential equations replaces Laplace transforms. There is sufficient linear algebra in the text so that it can be used for a course that combines differential equations and linear algebra. Most significantly, computer labs are given in MATLAB®, Mathematica®, and MapleTM. The book may be used for a course to introduce and equip the student with a knowledge of the given software. Sample course outlines are included. Features MATLAB®, Mathematica®, and MapleTM are incorporated at the end of each chapter All three software packages have parallel code and exercises There are numerous problems of varying difficulty for both the applied and pure math major, as well as problems for engineering, physical science and other students. An appendix that gives the reader a "crash course" in the three software packages Chapter reviews at the end of each chapter to help the students review Projects at the end of each chapter that go into detail about certain topics and introduce new topics that the students are now ready to see Answers to most of the odd problems in the back of the book
Book Synopsis A First Course in Ordinary Differential Equations by : Martin Hermann
Download or read book A First Course in Ordinary Differential Equations written by Martin Hermann and published by Springer Science & Business. This book was released on 2014-04-22 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German–Iranian research project on mathematical methods for ODEs, which was started in early 2012.
Book Synopsis Ordinary Differential Equations and Dynamical Systems by : Gerald Teschl
Download or read book Ordinary Differential Equations and Dynamical Systems written by Gerald Teschl and published by American Mathematical Society. This book was released on 2024-01-12 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Book Synopsis An Introduction to Ordinary Differential Equations by : Ravi P. Agarwal
Download or read book An Introduction to Ordinary Differential Equations written by Ravi P. Agarwal and published by Springer Science & Business Media. This book was released on 2008-12-10 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordinary differential equations serve as mathematical models for many exciting real world problems. Rapid growth in the theory and applications of differential equations has resulted in a continued interest in their study by students in many disciplines. This textbook organizes material around theorems and proofs, comprising of 42 class-tested lectures that effectively convey the subject in easily manageable sections. The presentation is driven by detailed examples that illustrate how the subject works. Numerous exercise sets, with an "answers and hints" section, are included. The book further provides a background and history of the subject.
Book Synopsis Introduction to Ordinary Differential Equations by : Albert L. Rabenstein
Download or read book Introduction to Ordinary Differential Equations written by Albert L. Rabenstein and published by Academic Press. This book was released on 2014-05-12 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutions, and that should be of interest to the mathematics major, such as the theorems about the existence and uniqueness of solutions. The final chapters discuss the stability of critical points of plane autonomous systems and the results about the existence of periodic solutions of nonlinear equations. This book is great use to mathematicians, physicists, and undergraduate students of engineering and the science who are interested in applications of differential equation.
Book Synopsis Ordinary Differential Equations and Dynamical Systems by : Thomas C. Sideris
Download or read book Ordinary Differential Equations and Dynamical Systems written by Thomas C. Sideris and published by Springer Science & Business Media. This book was released on 2013-10-17 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a mathematically rigorous introduction to the beautiful subject of ordinary differential equations for beginning graduate or advanced undergraduate students. Students should have a solid background in analysis and linear algebra. The presentation emphasizes commonly used techniques without necessarily striving for completeness or for the treatment of a large number of topics. The first half of the book is devoted to the development of the basic theory: linear systems, existence and uniqueness of solutions to the initial value problem, flows, stability, and smooth dependence of solutions upon initial conditions and parameters. Much of this theory also serves as the paradigm for evolutionary partial differential equations. The second half of the book is devoted to geometric theory: topological conjugacy, invariant manifolds, existence and stability of periodic solutions, bifurcations, normal forms, and the existence of transverse homoclinic points and their link to chaotic dynamics. A common thread throughout the second part is the use of the implicit function theorem in Banach space. Chapter 5, devoted to this topic, the serves as the bridge between the two halves of the book.