3D Numerical Modeling of Dry/wet Contact Mechanics for Rough, Multilayered Elastic-plastic Solid Surfaces and Effects of Hydrophilicity/hydrophobicity During Separation with Applications

Download 3D Numerical Modeling of Dry/wet Contact Mechanics for Rough, Multilayered Elastic-plastic Solid Surfaces and Effects of Hydrophilicity/hydrophobicity During Separation with Applications PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 204 pages
Book Rating : 4.:/5 (236 download)

DOWNLOAD NOW!


Book Synopsis 3D Numerical Modeling of Dry/wet Contact Mechanics for Rough, Multilayered Elastic-plastic Solid Surfaces and Effects of Hydrophilicity/hydrophobicity During Separation with Applications by : Shaobiao Cai

Download or read book 3D Numerical Modeling of Dry/wet Contact Mechanics for Rough, Multilayered Elastic-plastic Solid Surfaces and Effects of Hydrophilicity/hydrophobicity During Separation with Applications written by Shaobiao Cai and published by . This book was released on 2008 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Adhesion, friction/stiction and wear are among the main issues in magnetic storage devices, microelectromechanical systems (MEMS/NEMS), and other commercial devices having contacting interfaces with normal or tangential motion. Relevant parameters, i.e., layer thicknesses and their mechanical properties for the contact solid surfaces, the roles of meniscus and viscous forces for separation of surfaces from liquid films, need to be studied to provide a fundamental understanding of the phenomenon and the physics of the experienced problems. The simulation of contact mechanics and the modeling of separation of two surfaces with and without liquid mediated contacts are effective ways to investigate these issues. In the simulation of contact mechanics, a numerical three-dimensional (3D) rough multilayered contact model is developed to investigate the effects of roughness, stiffness, hardness, layer thicknesses, load, coefficient of friction, and meniscus contribution of elastic-perfectly plastic solid surfaces. The model is based on a variational principle in which the contact pressure distributions are those that minimize the total complementary potential energy. The quasi-Newton method is used to find the minimum. The influence coefficients of the displacements and stresses for a multilayered contact model are determined using the Papkovich-Neuber potentials with a Fast Fourier Transform (FFT) based scheme. Contact analysis of multilayered structures under both dry and wet conditions with and without sliding which simulates the actual contact situations of those devices is performed to identify and obtain optimum design parameters including materials with desired mechanical properties, layer thicknesses, and to predict and analyze the contact behavior of devices in operation. In the modeling of separation of two surfaces with liquid mediated contacts, numerical models of normal and tangential separation of smooth or rough surfaces are developed. The analyses for both forces during normal and tangential separation of hydrophilic and hydrophobic smooth or rough surfaces with symmetric and asymmetric contact angles, and viscous force effects during tangential separation are presented. The important design parameters, i.e., separation distance, initial meniscus height, separation time, contact angle, and roughness are analyzed. The analyses provide a fundamental understanding of the physics of separation process and insights into the relationships between both the forces. Implications of these analyses in macro/micro/nano technologies are discussed. Applications of the 3D multilayered rough contact model to magnetic storage devices and applications of the model of separation of two surfaces from liquid thin film to macro/micro/nano technologies are discussed.

Dissertation Abstracts International

Download Dissertation Abstracts International PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 868 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Dissertation Abstracts International by :

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2008 with total page 868 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Contact Mechanics Modeling of Homogeneous and Layered Elastic-Plastic Media

Download Contact Mechanics Modeling of Homogeneous and Layered Elastic-Plastic Media PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 312 pages
Book Rating : 4.:/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Contact Mechanics Modeling of Homogeneous and Layered Elastic-Plastic Media by : Zhichao Song

Download or read book Contact Mechanics Modeling of Homogeneous and Layered Elastic-Plastic Media written by Zhichao Song and published by . This book was released on 2012 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this dissertation was to analyze surface contact interaction at different length scales and to elucidate the effects of material properties (e.g., adhesion and mechanical properties), normal and shear (friction) surface tractions, and topography parameters (e.g., roughness) on contact deformation. To accomplish this objective, a surface adhesion model based on an interatomic potential was incorporated into finite element contact models of rough surfaces exhibiting multi-scale roughness described by statistical and fractal geometry models. The problem of a rigid sphere in contact with an elastic-plastic half-space was first examined in the light of finite element simulations. Four post-yield deformation regimes were identified and the boundaries of neighboring regimes were obtained by curve-fitting of finite element results. Material hardness was shown to significantly deviate from the similarity solution with decreasing elastic modulus-to-yield strength ratio and the logarithmic dependence of the mean contact pressure on the indentation depth was found to hold only when the plastic zone was completely surrounded by elastic material. Constitutive equations were first derived for elastic-perfectly plastic half-spaces from curve-fitting finite element results and were then extended to isotropic, power-law hardening half-spaces, using the concept of the effective strain, which correlates the indentation depth with the indenter size. Finite element simulations of unloading process and repetitive normal contact were used to correlate the residual indentation depth and the dissipated plastic energy with the maximum indentation depth. Elastic shakedown, plastic shakedown, and ratcheting were identified by tracking the accumulation of plasticity for different values of maximum contact load and elastic modulus-to-yield strength ratio. The semi-infinite half-space was characterized by three different regions, named ratcheting region, shakedown region and elastic region, as the distance to contact surface increases. The obtained results have direct implication in material property measurements obtained with indentation method, particularly for materials exhibiting strain hardening behavior, and provide insight into the accumulation of plasticity due to repetitive contact loading, which is important in the understanding of the contact fatigue life of contact-mode devices. Sliding contact between a rigid fractal surface exhibiting multi-scale roughness and an elastic-plastic half-space was examined to elucidate rough-surface deformation due to small-amplitude reciprocating sliding (fretting). Stick-slip at the asperity scale was analyzed based on Mindlin's theory and a friction model that accounts for both adhesion and plowing effects. Numerical results yield insight into the effects of surface roughness, contact pressure, oscillation amplitude, elastic modulus-to-yield strength ratio, and interfacial adhesion on the friction force, slip index, and energy dissipation. The results of this study illustrate the important role of the contact load and surface topography on the energy dissipation and fretting wear of small-amplitude oscillatory contacts. Surface adhesion modeled as surface traction obeying the Lennard-Jones (LJ) potential was incorporated into the contact analysis of a rigid sphere indenting an elastic half-space to study contact instabilities associated with instantaneous surface contact (jump-in) and detachment (jump-out). This surface traction was introduced into a finite element contact model in the form of nonlinear spring elements and the jump-in/jump-out condition obtained analytically was confirmed by finite element results. Then, adhesive contact between a rigid sphere and an elastic-plastic half-space was analyzed and the effect of plasticity on the pull-off force and the commencement of contact instabilities was interpreted in terms of a modified Tabor parameter. The developed finite element model with nonlinear spring elements representing adhesive surface interaction provides a physics-based, computationally-efficient technique for studying adhesive contacts. The obtained results provide explanation for the contact instabilities encountered during surface probing with microprobe tips and stiction (permanent adhesion) in contact-mode microdevices. Adhesive contact between a rigid sphere and a layered medium analyzed with the finite element method shed light into adhesion-induced contact deformation. Two modes of surface detachment were observed for perfect bonding of the film to the substrate - brittle- and ductile-like surface detachment. Simulation results illustrate the effects of the maximum surface separation, film thickness, film-to-substrate elastic property mismatch, and substrate yield strength on the mode of surface detachment and residual deformation. Introducing a cohesive model that allows for crack formation and growth along the film/substrate interface in the previous finite element model, a residual cohesive zone was found at the crack tip after complete unloading. Contact instabilities and interface delamination were interpreted by the competing effects of surface adhesion and interfacial cohesion. Crack closure and crack-tip opening displacement (CTOD) were studied by performing a parametric study of the cohesive strength, interfacial energy, surface energy, surface adhesive strength, substrate yield strength, and initial defect size. The obtained results can be used to explain thin-film failure in contact systems due to the effect of adhesion and to improve the endurance of thin-film media subjected to surface tractions. Adhesive contact of two elastic rough surfaces was analyzed by integrating asperity-scale constitutive equations into the model of Greenwood and Williamson (1966) to account for the effect of contact instabilities at asperity level on the macroscopic contact response. The strength of adhesion was found to be mostly affected by the Tabor parameter and the surface roughness. The widely used adhesion parameter of Fuller and Tabor (1977) was shown to be appropriate only for contact systems characterized by a high Tabor parameter. Therefore, a new adhesion parameter that governs the strength of adhesion of contact systems with a low Tabor parameter was introduced. Finally, a generalized adhesion parameter was derived by using the concept of the effective interatomic separation, defined as the ratio of the elastic stretch due to adhesion and the equilibrium interatomic distance. The research carried out in this dissertation provides fundamental understanding of the evolution of the stress and strain fields in contacting surfaces, the evolution of plasticity in indentation, the development of friction and dissipation of energy in fretting contacts, the occurrence of adhesion-induced contact instabilities and interfacial delamination, and the factors affecting the strength of adhesion for rough surfaces in normal contact. The results of this thesis have direct implications in various technologies, including high-efficiency gas turbines, magnetic storage devices, and microelectromechanical systems.

Contact Mechanics of Multilayered Rough Surfaces in Tribology

Download Contact Mechanics of Multilayered Rough Surfaces in Tribology PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 436 pages
Book Rating : 4.:/5 (495 download)

DOWNLOAD NOW!


Book Synopsis Contact Mechanics of Multilayered Rough Surfaces in Tribology by : Wei Peng

Download or read book Contact Mechanics of Multilayered Rough Surfaces in Tribology written by Wei Peng and published by . This book was released on 2001 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The specification of layer properties to reduce friction, stiction, and wear of layered rough surfaces. Typical examples of layered rough surfaces contact simulated by this model are presented.The examples contain data for various surface topographies, elastic and elastic-plastic material properties, normal and tangential loading conditions, and dry and wet interfaces. Applications of this model to the magnetic storage devices and MicroElectroMechanical Systems (MEMS) are presented.

Mechanics of Hysteretic Adhesive Elastic Mechanical Contact Between Rough Surfaces

Download Mechanics of Hysteretic Adhesive Elastic Mechanical Contact Between Rough Surfaces PDF Online Free

Author :
Publisher : Stanford University
ISBN 13 :
Total Pages : 180 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Mechanics of Hysteretic Adhesive Elastic Mechanical Contact Between Rough Surfaces by : Haneesh Kesari

Download or read book Mechanics of Hysteretic Adhesive Elastic Mechanical Contact Between Rough Surfaces written by Haneesh Kesari and published by Stanford University. This book was released on 2011 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: In experiments that involve contact with adhesion between two surfaces, as found in atomic force microscopy or nanoindentation, two distinct contact force (P ) vs. indentation-depth (h) curves are often measured depending on whether the indenter moves towards or away from the sample. The origin of this hysteresis is not well understood and is often attributed to moisture, plasticity or viscoelasticity. We present experiments, atomistic simulations and continuum mechanics models that will show that hysteresis can exist without these effects, and that its magnitude depends on surface roughness. We explain the observed hysteresis as the result of a series of surface instabilities, where the contact area grows or recedes by a finite amount. We also demonstrate that when this is the case material properties can be estimated uniquely from contact experiments even when the measured P -h curves are not unique. The hysteresis energy loss during contact is also a measure of the adhesive toughness of the contact interface. We show experimentally that roughness can both increase and decrease the adhesive toughness of the contact interface. We show through numerical simulation of continuum adhesive contact models that the contact interface is optimally tough at conditions at which the contact region is at the cusp of the transition through which it turns form being mostly simply connected to being predominantly multiply connected.

Contact Mechanics of Elastic-plastic Layered Media with Smooth and Rough Surfaces

Download Contact Mechanics of Elastic-plastic Layered Media with Smooth and Rough Surfaces PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 380 pages
Book Rating : 4.:/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Contact Mechanics of Elastic-plastic Layered Media with Smooth and Rough Surfaces by : Ning Yeh

Download or read book Contact Mechanics of Elastic-plastic Layered Media with Smooth and Rough Surfaces written by Ning Yeh and published by . This book was released on 2002 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Asperity-scale Surface Mechanics - Implications to Adhesive Contacts and Microscale Deformation Behavior of Rough Surfaces

Download Asperity-scale Surface Mechanics - Implications to Adhesive Contacts and Microscale Deformation Behavior of Rough Surfaces PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 416 pages
Book Rating : 4.:/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Asperity-scale Surface Mechanics - Implications to Adhesive Contacts and Microscale Deformation Behavior of Rough Surfaces by : Huaming Xu

Download or read book Asperity-scale Surface Mechanics - Implications to Adhesive Contacts and Microscale Deformation Behavior of Rough Surfaces written by Huaming Xu and published by . This book was released on 2012 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The principal objective of this dissertation was to develop numerical and analytical mechanics models accounting for nano-/micro-scale solid surface interaction. This was accomplished by developing finite element models of an asperity in adhesive sliding contact with a homogenous half-space and asperity micro-fracture due to normal and sliding contact of homogenous or layered half-spaces, and analytical models of nanoscale surface polishing and nanoparticle embedment on rough surfaces using a probabilistic approach. Adhesive interaction of a rigid asperity moving over a homogeneous elastic-plastic half-space was modeled by nonlinear springs obeying a constitutive law derived from the Lennard-Jones potential. The evolution of the normal and friction forces, subsurface stresses, and plastic deformation at steady-state sliding was examined in terms of the work of adhesion, interaction distance (interfacial gap), Maugis parameter, and plasticity parameter, using the finite element method (FEM). The deformation behavior of homogeneous elastic-perfectly plastic (EPP) and elastic-linear kinematic hardening plastic (ELKP) half-spaces subjected to repeated adhesive sliding contacts was also the objective of this analysis. Numerical results provided insight into the effects of the aforementioned parameters on the friction and normal forces, stress-strain response, and evolution of subsurface plasticity with the accumulation of sliding cycles. The steady-state mode of deformation due to repeated adhesive sliding contacts was examined for both EPP and ELKP material behavior. Subsurface cracking in a layered medium consisting of an elastic hard layer and an elastic-plastic substrate due to adhesive sliding against a rigid asperity was analyzed using linear elastic fracture mechanics (LEFM) and FEM model. The dominance of shear and tensile mode of crack propagation was examined in terms of the interaction depth, layer thickness, crack location, crack length, work of adhesion, and mechanical properties of the thin layer and substrate materials. The effect of adhesion on asperity failure due to normal contact was also studied. The crack growth direction, dominant fracture mode, and crack growth rate were predicted as functions of the initial crack position, asperity interaction distance, interfacial properties, and mechanical properties. FEM results showed the occurrence of different crack mechanisms, such as of crack-face opening, slip, and stick. The evolution of the surface topography during nanoscale surface polishing was studied with a three-dimensional stochastic model that accounts for a multi-scale (fractal) surface roughness and elastic, elastic-plastic, and fully-plastic deformation of the asperities on the polished surface caused by hard abrasive nanoparticles embedded in the soft surface layer of a rigid polishing countersurface. Numerical results of the steady-state roughness of the polished surface, material removal rate, and wear coefficient were determined in terms of the apparent contact pressure, polishing speed, original topography and mechanical properties of the polished surface, average size and density of the nanoparticles, and surface roughness of the polishing plate. The density of hard abrasive nanoparticles embedded in the soft countersurface was predicted by a probabilistic-hydrodynamic model in terms of the surface topographies, particle size distribution, applied forces, macroscopic geometry of the moving surfaces, surface kinematics, and fluid properties. The findings of this dissertation yield new insight into the deformation behavior of adhesive contacts involving homogeneous and layered half-spaces, from the single asperity level to surfaces with multi-asperity topographies. The significance of the interfacial properties and material properties on adhesive asperity sliding contact, the effects of interfacial adhesion and crack properties on asperity cracking and subsurface cracking, and the dependence of the surface topography evolution during nanoscale polishing on the surface topographies, material properties, and abrasive nanoparticle size were examined in the context of numerical and analytical results. The results of this thesis elucidate the mechanical aspects of surface contact interaction in nano/microscale engineering components and surfacing processes, such as hard-disk drives, micro-electro-mechanical systems, and nanoscale surface polishing, and provide insight into the underlying reasons leading to mechanical failure of homogeneous and layered half-spaces subjected to surface tractions. Solutions and FEM results for single-asperity contacts obtained in this work can be integrated into probabilistic analyses of contacting rough surfaces to advance the current state of contact mechanics of surfaces exhibiting multi-asperity topographies.

Sub-discretized Surface Model with Application to Contact Mechanics in Multi-body Simulation

Download Sub-discretized Surface Model with Application to Contact Mechanics in Multi-body Simulation PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 32 pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Sub-discretized Surface Model with Application to Contact Mechanics in Multi-body Simulation by :

Download or read book Sub-discretized Surface Model with Application to Contact Mechanics in Multi-body Simulation written by and published by . This book was released on 2008 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidates assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.

Microscale Surface Tension and Its Applications

Download Microscale Surface Tension and Its Applications PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039215647
Total Pages : 240 pages
Book Rating : 4.0/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Microscale Surface Tension and Its Applications by : Pierre Lambert

Download or read book Microscale Surface Tension and Its Applications written by Pierre Lambert and published by MDPI. This book was released on 2019-10-21 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on advances in miniaturization and soft matter, surface tension effects are a major key to the development of soft/fluidic microrobotics. Benefiting from scaling laws, surface tension and capillary effects can enable sensing, actuation, adhesion, confinement, compliance, and other structural and functional properties necessary in micro- and nanosystems. Various applications are under development: microfluidic and lab-on-chip devices, soft gripping and manipulation of particles, colloidal and interfacial assemblies, fluidic/droplet mechatronics. The capillary action is ubiquitous in drops, bubbles and menisci, opening a broad spectrum of technological solutions and scientific investigations. Identified grand challenges to the establishment of fluidic microrobotics include mastering the dynamics of capillary effects, controlling the hysteresis arising from wetting and evaporation, improving the dispensing and handling of tiny droplets, and developing a mechatronic approach for the control and programming of surface tension effects. In this Special Issue of Micromachines, we invite contributions covering all aspects of microscale engineering relying on surface tension. Particularly, we welcome contributions on fundamentals or applications related to: Drop-botics: fluidic or surface tension-based micro/nanorobotics: capillary manipulation, gripping, and actuation, sensing, folding, propulsion and bio-inspired solutions; Control of surface tension effects: surface tension gradients, active surfactants, thermocapillarity, electrowetting, elastocapillarity; Handling of droplets, bubbles and liquid bridges: dispensing, confinement, displacement, stretching, rupture, evaporation; Capillary forces: modelling, measurement, simulation; Interfacial engineering: smart liquids, surface treatments; Interfacial fluidic and capillary assembly of colloids and devices; Biological applications of surface tension, including lab-on-chip and organ-on-chip systems.

Physics and Chemistry of Interfaces

Download Physics and Chemistry of Interfaces PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527836160
Total Pages : 485 pages
Book Rating : 4.5/5 (278 download)

DOWNLOAD NOW!


Book Synopsis Physics and Chemistry of Interfaces by : Hans-Jürgen Butt

Download or read book Physics and Chemistry of Interfaces written by Hans-Jürgen Butt and published by John Wiley & Sons. This book was released on 2023-02-07 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics and Chemistry of Interfaces Comprehensive textbook on the interdisciplinary field of interface science, fully updated with new content on wetting, spectroscopy, and coatings Physics and Chemistry of Interfaces provides a comprehensive introduction to the field of surface and interface science, focusing on essential concepts rather than specific details, and on intuitive understanding rather than convoluted math. Numerous high-end applications from surface technology, biotechnology, and microelectronics are included to illustrate and help readers easily comprehend basic concepts. The new edition contains an increased number of problems with detailed, worked solutions, making it ideal as a self-study resource. In topic coverage, the highly qualified authors take a balanced approach, discussing advanced interface phenomena in detail while remaining comprehensible. Chapter summaries with the most important equations, facts, and phenomena are included to aid the reader in information retention. A few of the sample topics included in Physics and Chemistry of Interfaces are as follows: Liquid surfaces, covering microscopic picture of a liquid surface, surface tension, the equation of Young and Laplace, and curved liquid surfaces Thermodynamics of interfaces, covering surface excess, internal energy and Helmholtz energy, equilibrium conditions, and interfacial excess energies Charged interfaces and the electric double layer, covering planar surfaces, the Grahame equation, and limitations of the Poisson-Boltzmann theory Surface forces, covering Van der Waals forces between molecules, macroscopic calculations, the Derjaguin approximation, and disjoining pressure Physics and Chemistry of Interfaces is a complete reference on the subject, aimed at advanced students (and their instructors) in physics, material science, chemistry, and engineering. Researchers requiring background knowledge on surface and interface science will also benefit from the accessible yet in-depth coverage of the text.

Fluid Transport Phenomena in Fibrous Materials

Download Fluid Transport Phenomena in Fibrous Materials PDF Online Free

Author :
Publisher : Woodhead Pub Limited
ISBN 13 : 9781845691639
Total Pages : 93 pages
Book Rating : 4.6/5 (916 download)

DOWNLOAD NOW!


Book Synopsis Fluid Transport Phenomena in Fibrous Materials by : N. Pan

Download or read book Fluid Transport Phenomena in Fibrous Materials written by N. Pan and published by Woodhead Pub Limited. This book was released on 2006 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Textile Progress monograph series provides a critical and comprehensive examination of the origination and application of developments in the textile industry and its products. This issue reviews recent developments in the understanding of the fundamentals of liquid transport phenomena in fibrous materials, and deals with a wide range of issues, many of which are complex and thus still inadequately understood.

Electrospun Nanofibers

Download Electrospun Nanofibers PDF Online Free

Author :
Publisher : Woodhead Publishing
ISBN 13 : 0081009119
Total Pages : 650 pages
Book Rating : 4.0/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Electrospun Nanofibers by : Mehdi Afshari

Download or read book Electrospun Nanofibers written by Mehdi Afshari and published by Woodhead Publishing. This book was released on 2016-09-13 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrospun Nanofibers covers advances in the electrospinning process including characterization, testing and modeling of electrospun nanofibers, and electrospinning for particular fiber types and applications. Electrospun Nanofibers offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science. Electrospinning is the most commercially successful process for the production of nanofibers and rising demand is driving research and development in this field. Rapid progress is being made both in terms of the electrospinning process and in the production of nanofibers with superior chemical and physical properties. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types such as bicomponent and composite fibers, patterned and 3D nanofibers, carbon nanofibers and nanotubes, and nanofibers derived from chitosan. Provides systematic and comprehensive coverage of the manufacture, properties, and applications of nanofibers Covers recent developments in nanofibers materials including electrospinning of bicomponent, chitosan, carbon, and conductive fibers Brings together expertise from academia and industry to provide comprehensive, up-to-date information on nanofiber research and development Offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science

Progress in Lubrication and Nano- and Biotribology

Download Progress in Lubrication and Nano- and Biotribology PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000475883
Total Pages : 217 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Progress in Lubrication and Nano- and Biotribology by : Catalin I. Pruncu

Download or read book Progress in Lubrication and Nano- and Biotribology written by Catalin I. Pruncu and published by CRC Press. This book was released on 2021-11-23 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tribology is a multidisciplinary science that encompasses mechanical engineering, materials science, surface engineering, lubricants, and additives chemistry with tremendous applications. Progress in Lubrication and Nano- and Biotribology discusses the latest in lubrication engineering and nano- and biotribology. This book: Discusses green tribology and snakeskin tribology Explains biogreases and nanolubricant additives Explores applications in aerospace, additively manufactured parts, and severe environments Written for researchers and advanced students, this book encompasses a wide-ranging view of the latest in nano- and biotribology for a variety of cross-disciplinary applications.

The Mekong Delta System

Download The Mekong Delta System PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400739621
Total Pages : 466 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis The Mekong Delta System by : Fabrice G. Renaud

Download or read book The Mekong Delta System written by Fabrice G. Renaud and published by Springer Science & Business Media. This book was released on 2012-06-01 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book about the Mekong Delta presents a unique collection of state-of-the-art contributions by international experts from different scientific disciplines about the characteristics and pressing water-related challenges of the Mekong Delta in Vietnam. The Mekong Delta belongs to one of the areas, which are to expect the largest challenges concerning environmental change and climate change induced sea level rise . The Delta acts as the “rice bowl” of Southeast Asia and is home to over 17 Million people, who need to cope with ecologic as well as socio-economic changes linked to the rapid economic development of the country. Annual floods, severe droughts, salt water intrusion, degrading water quality, tropical cyclones, hydrologic changes due to hydropower projects in the upstream of the Mekong, coastal erosion, and the loss of biodiversity are some of the problems in the region. Heterogeneous resource management responsibilities, and the fact that the Mekong – and thus also the Delta – is influenced by six countries aggravate the situation. Integrated water resources management and fostered cooperation and information exchange are pressing needs for the sustainable development of the Delta.

Engineered Interfaces in Fiber Reinforced Composites

Download Engineered Interfaces in Fiber Reinforced Composites PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080530974
Total Pages : 416 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Engineered Interfaces in Fiber Reinforced Composites by : Jang-Kyo Kim

Download or read book Engineered Interfaces in Fiber Reinforced Composites written by Jang-Kyo Kim and published by Elsevier. This book was released on 1998-10-21 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study and application of composite materials are a truly interdisciplinary endeavour that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. While there are many reference books available on composite materials, few of them deal specifically with the science and mechanics of the interface of fiber reinforced composites. Further, many recent advances devoted solely to research in composite interfaces have been scattered in a variety of published literature and have yet to be assembled in a readily accessible form. To this end this book is an attempt to bring together recent developments in the field, both from the materials science and mechanics perspective, in a single convenient volume. The central theme of the book is tailoring the interface properties to optimise the mechanical peformance and structural integrity of composites with enhanced strength/stiffness and fracture toughness (or specific fracture resistance). It deals mainly with interfaces in advanced composites made from high performance fibers, such as glass, carbon, aramid, ultra high modulus polyethylene and some inorganic (e.g. B/W, A12O3, SiC) fibers, and matrix materials encompassing polymers, metals/alloys and ceramics. The book is intended to provide a comprehensive treatment of composite interfaces in such a way that it should be of interest to materials scientists, technologists and practising engineers, as well as graduate students and their supervisors in advanced composites. We hope that this book will also serve as a valuable source of reference to all those involved in the design and research of composite interfaces. The book contains eight chapters of discussions on microstructure-property relationships with underlying fundamental mechanics principles. In Chapter 1, an introduction is given to the nature and definition of interfaces in fiber reinforced composites. Chapter 2 is devoted to the mechanisms of adhesion which are specific to each fiber-matrix system, and the physio-chemical characterization of the interface with regard to the origin of adhesion. The experimental techniques that have been developed to assess the fiber-matrix interface bond quality on a microscopic scale are presented in Chapter 3, along with the techniques of measuring interlaminar/intralaminar strengths and fracture toughness using bulk composite laminates. The applicability and limitations associated with loading geometry and interpretation of test data are compared. Chapter 4 presents comprehensive theoretical analyses based on shear-lag models of the single fiber composite tests, with particular interest being placed on the interface debond process and the nature of the fiber-matrix interfacial bonding. Chapter 5 is devoted to reviewing current techniques of fiber surface treatments which have been devised to improve the bond strength and the fiber-matrix compatibility/stability during the manufacturing processes of composites. The micro-failure mechanisms and their associated theories of fracture toughness of composites are discussed in Chapter 6. The roles of the interface and its effects on the mechanical performance of fiber composites are addressed from several viewpoints. Recent research efforts to augment the transverse and interlaminar fracture toughness by means of controlled interfaces are presented in Chapters 7 and 8.

Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics

Download Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319450719
Total Pages : 161 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics by : Stéphane Avril

Download or read book Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics written by Stéphane Avril and published by Springer. This book was released on 2016-10-12 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.

Superhydrophobic Surfaces

Download Superhydrophobic Surfaces PDF Online Free

Author :
Publisher :
ISBN 13 : 1838805974
Total Pages : 132 pages
Book Rating : 4.8/5 (388 download)

DOWNLOAD NOW!


Book Synopsis Superhydrophobic Surfaces by : Mehdi Khodaei

Download or read book Superhydrophobic Surfaces written by Mehdi Khodaei and published by . This book was released on 2020-07 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: