Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
104 Number Theory Problems
Download 104 Number Theory Problems full books in PDF, epub, and Kindle. Read online 104 Number Theory Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis 104 Number Theory Problems by : Titu Andreescu
Download or read book 104 Number Theory Problems written by Titu Andreescu and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This challenging problem book by renowned US Olympiad coaches, mathematics teachers, and researchers develops a multitude of problem-solving skills needed to excel in mathematical contests and in mathematical research in number theory. Offering inspiration and intellectual delight, the problems throughout the book encourage students to express their ideas in writing to explain how they conceive problems, what conjectures they make, and what conclusions they reach. Applying specific techniques and strategies, readers will acquire a solid understanding of the fundamental concepts and ideas of number theory.
Book Synopsis 102 Combinatorial Problems by : Titu Andreescu
Download or read book 102 Combinatorial Problems written by Titu Andreescu and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: "102 Combinatorial Problems" consists of carefully selected problems that have been used in the training and testing of the USA International Mathematical Olympiad (IMO) team. Key features: * Provides in-depth enrichment in the important areas of combinatorics by reorganizing and enhancing problem-solving tactics and strategies * Topics include: combinatorial arguments and identities, generating functions, graph theory, recursive relations, sums and products, probability, number theory, polynomials, theory of equations, complex numbers in geometry, algorithmic proofs, combinatorial and advanced geometry, functional equations and classical inequalities The book is systematically organized, gradually building combinatorial skills and techniques and broadening the student's view of mathematics. Aside from its practical use in training teachers and students engaged in mathematical competitions, it is a source of enrichment that is bound to stimulate interest in a variety of mathematical areas that are tangential to combinatorics.
Download or read book Number Theory written by Titu Andreescu and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory textbook takes a problem-solving approach to number theory, situating each concept within the framework of an example or a problem for solving. Starting with the essentials, the text covers divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Included are sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems. By emphasizing examples and applications the authors motivate and engage readers.
Book Synopsis Mathematical Olympiad Challenges by : Titu Andreescu
Download or read book Mathematical Olympiad Challenges written by Titu Andreescu and published by Springer Science & Business Media. This book was released on 2000-04-26 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of problems put together by coaches of the U.S. International Mathematical Olympiad Team.
Book Synopsis An Illustrated Theory of Numbers by : Martin H. Weissman
Download or read book An Illustrated Theory of Numbers written by Martin H. Weissman and published by American Mathematical Soc.. This book was released on 2020-09-15 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: News about this title: — Author Marty Weissman has been awarded a Guggenheim Fellowship for 2020. (Learn more here.) — Selected as a 2018 CHOICE Outstanding Academic Title — 2018 PROSE Awards Honorable Mention An Illustrated Theory of Numbers gives a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final chapters contain an extended treatment of binary quadratic forms, using Conway's topograph to solve quadratic Diophantine equations (e.g., Pell's equation) and to study reduction and the finiteness of class numbers. Data visualizations introduce the reader to open questions and cutting-edge results in analytic number theory such as the Riemann hypothesis, boundedness of prime gaps, and the class number 1 problem. Accompanying each chapter, historical notes curate primary sources and secondary scholarship to trace the development of number theory within and outside the Western tradition. Requiring only high school algebra and geometry, this text is recommended for a first course in elementary number theory. It is also suitable for mathematicians seeking a fresh perspective on an ancient subject.
Book Synopsis Mathematical Olympiad Treasures by : Titu Andreescu
Download or read book Mathematical Olympiad Treasures written by Titu Andreescu and published by Springer Science & Business Media. This book was released on 2011-09-21 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Olympiad Treasures aims at building a bridge between ordinary high school exercises and more sophisticated, intricate and abstract concepts in undergraduate mathematics. The book contains a stimulating collection of problems in the subjects of algebra, geometry, trigonometry, number theory and combinatorics. While it may be considered a sequel to "Mathematical Olympiad Challenges," the focus is on engaging a wider audience to apply techniques and strategies to real-world problems. Throughout the book students are encouraged to express their ideas, conjectures, and conclusions in writing. The goal is to help readers develop a host of new mathematical tools that will be useful beyond the classroom and in a number of disciplines.
Book Synopsis 250 Problems in Elementary Number Theory by : Wacław Sierpiński
Download or read book 250 Problems in Elementary Number Theory written by Wacław Sierpiński and published by Elsevier Publishing Company. This book was released on 1970 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis 103 Trigonometry Problems by : Titu Andreescu
Download or read book 103 Trigonometry Problems written by Titu Andreescu and published by Springer Science & Business Media. This book was released on 2006-03-04 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Problem-solving tactics and practical test-taking techniques provide in-depth enrichment and preparation for various math competitions * Comprehensive introduction to trigonometric functions, their relations and functional properties, and their applications in the Euclidean plane and solid geometry * A cogent problem-solving resource for advanced high school students, undergraduates, and mathematics teachers engaged in competition training
Download or read book Number Theory written by Titu Andreescu and published by . This book was released on 2017-07-15 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Challenge your problem-solving aptitude in number theory with powerful problems that have concrete examples which reflect the potential and impact of theoretical results. Each chapter focuses on a fundamental concept or result, reinforced by each of the subsections, with scores of challenging problems that allow you to comprehend number theory like never before. All students and coaches wishing to excel in math competitions will benefit from this book as will mathematicians and adults who enjoy interesting mathematics.
Book Synopsis Solved and Unsolved Problems in Number Theory by : Daniel Shanks
Download or read book Solved and Unsolved Problems in Number Theory written by Daniel Shanks and published by American Mathematical Society. This book was released on 2024-01-24 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The investigation of three problems, perfect numbers, periodic decimals, and Pythagorean numbers, has given rise to much of elementary number theory. In this book, Daniel Shanks, past editor of Mathematics of Computation, shows how each result leads to further results and conjectures. The outcome is a most exciting and unusual treatment. This edition contains a new chapter presenting research done between 1962 and 1978, emphasizing results that were achieved with the help of computers.
Book Synopsis Methods of Solving Number Theory Problems by : Ellina Grigorieva
Download or read book Methods of Solving Number Theory Problems written by Ellina Grigorieva and published by Birkhäuser. This book was released on 2018-07-06 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking. The first chapter starts with simple topics like even and odd numbers, divisibility, and prime numbers and helps the reader to solve quite complex, Olympiad-type problems right away. It also covers properties of the perfect, amicable, and figurate numbers and introduces congruence. The next chapter begins with the Euclidean algorithm, explores the representations of integer numbers in different bases, and examines continued fractions, quadratic irrationalities, and the Lagrange Theorem. The last section of Chapter Two is an exploration of different methods of proofs. The third chapter is dedicated to solving Diophantine linear and nonlinear equations and includes different methods of solving Fermat’s (Pell’s) equations. It also covers Fermat’s factorization techniques and methods of solving challenging problems involving exponent and factorials. Chapter Four reviews the Pythagorean triple and quadruple and emphasizes their connection with geometry, trigonometry, algebraic geometry, and stereographic projection. A special case of Waring’s problem as a representation of a number by the sum of the squares or cubes of other numbers is covered, as well as quadratic residuals, Legendre and Jacobi symbols, and interesting word problems related to the properties of numbers. Appendices provide a historic overview of number theory and its main developments from the ancient cultures in Greece, Babylon, and Egypt to the modern day. Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence.
Book Synopsis Problem-Solving Strategies by : Arthur Engel
Download or read book Problem-Solving Strategies written by Arthur Engel and published by Springer Science & Business Media. This book was released on 2008-01-19 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.
Book Synopsis Complex Numbers from A to ...Z by : Titu Andreescu
Download or read book Complex Numbers from A to ...Z written by Titu Andreescu and published by Springer Science & Business Media. This book was released on 2007-10-08 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Learn how complex numbers may be used to solve algebraic equations, as well as their geometric interpretation * Theoretical aspects are augmented with rich exercises and problems at various levels of difficulty * A special feature is a selection of outstanding Olympiad problems solved by employing the methods presented * May serve as an engaging supplemental text for an introductory undergrad course on complex numbers or number theory
Book Synopsis Geometric Problems on Maxima and Minima by : Titu Andreescu
Download or read book Geometric Problems on Maxima and Minima written by Titu Andreescu and published by Springer Science & Business Media. This book was released on 2007-12-31 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents hundreds of extreme value problems, examples, and solutions primarily through Euclidean geometry Unified approach to the subject, with emphasis on geometric, algebraic, analytic, and combinatorial reasoning Applications to physics, engineering, and economics Ideal for use at the junior and senior undergraduate level, with wide appeal to students, teachers, professional mathematicians, and puzzle enthusiasts
Book Synopsis Introduction to Analytic and Probabilistic Number Theory by : G. Tenenbaum
Download or read book Introduction to Analytic and Probabilistic Number Theory written by G. Tenenbaum and published by Cambridge University Press. This book was released on 1995-06-30 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained introduction to analytic methods in number theory, assuming on the part of the reader only what is typically learned in a standard undergraduate degree course. It offers to students and those beginning research a systematic and consistent account of the subject but will also be a convenient resource and reference for more experienced mathematicians. These aspects are aided by the inclusion at the end of each chapter a section of bibliographic notes and detailed exercises.
Book Synopsis A Brief Guide to Algebraic Number Theory by : H. P. F. Swinnerton-Dyer
Download or read book A Brief Guide to Algebraic Number Theory written by H. P. F. Swinnerton-Dyer and published by Cambridge University Press. This book was released on 2001-02-22 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
Book Synopsis The USSR Olympiad Problem Book by : D. O. Shklarsky
Download or read book The USSR Olympiad Problem Book written by D. O. Shklarsky and published by Courier Corporation. This book was released on 2013-04-15 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 300 challenging problems in algebra, arithmetic, elementary number theory and trigonometry, selected from Mathematical Olympiads held at Moscow University. Only high school math needed. Includes complete solutions. Features 27 black-and-white illustrations. 1962 edition.