Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Worldwide Differential Equations
Download Worldwide Differential Equations full books in PDF, epub, and Kindle. Read online Worldwide Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Worldwide Differential Calculus by : David B. Massey
Download or read book Worldwide Differential Calculus written by David B. Massey and published by . This book was released on 2009-01-01 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Global Properties of Linear Ordinary Differential Equations by : Frantisek Neuman
Download or read book Global Properties of Linear Ordinary Differential Equations written by Frantisek Neuman and published by Springer. This book was released on 1991 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an authoritative, unified overview of the methods and results concerning the global properties of linear differential equations of order n (n>=2). It does not, however, seek to be comprehensive. Rather, it contains a selection of results which richly illustrate the unified approach presented. By making use of recent methods and results from many different areas of mathematics and by introducing several original methods, global solutions of problems previously studied only locally are given. The structure of global transformations is described algebraically, and a new geometrical approach is introduced which leads to global canonical forms suitable for Cartan's moving frame-of-reference method. The theory discussed also provides effective tools for solving some open problems, especially relating to the distribution of zeros of solutions. In addition, the theory of functional equations plays an important role in studying the asymptotic behaviour of solutions. Applications to differential geometry and functional equations are also described. The volume is largely self-contained. This book is for mathematicians, computer scientists, physicists, chemists, engineers, and others whose work involves the use of linear differential equations.
Book Synopsis Introduction to Partial Differential Equations by : David Borthwick
Download or read book Introduction to Partial Differential Equations written by David Borthwick and published by Springer. This book was released on 2017-01-12 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise. Within each section the author creates a narrative that answers the five questions: What is the scientific problem we are trying to understand? How do we model that with PDE? What techniques can we use to analyze the PDE? How do those techniques apply to this equation? What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.
Book Synopsis Ordinary Differential Equations by : William A. Adkins
Download or read book Ordinary Differential Equations written by William A. Adkins and published by Springer Science & Business Media. This book was released on 2012-07-01 with total page 807 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike most texts in differential equations, this textbook gives an early presentation of the Laplace transform, which is then used to motivate and develop many of the remaining differential equation concepts for which it is particularly well suited. For example, the standard solution methods for constant coefficient linear differential equations are immediate and simplified, and solution methods for constant coefficient systems are streamlined. By introducing the Laplace transform early in the text, students become proficient in its use while at the same time learning the standard topics in differential equations. The text also includes proofs of several important theorems that are not usually given in introductory texts. These include a proof of the injectivity of the Laplace transform and a proof of the existence and uniqueness theorem for linear constant coefficient differential equations. Along with its unique traits, this text contains all the topics needed for a standard three- or four-hour, sophomore-level differential equations course for students majoring in science or engineering. These topics include: first order differential equations, general linear differential equations with constant coefficients, second order linear differential equations with variable coefficients, power series methods, and linear systems of differential equations. It is assumed that the reader has had the equivalent of a one-year course in college calculus.
Book Synopsis Differential and Difference Equations with Applications by : Sandra Pinelas
Download or read book Differential and Difference Equations with Applications written by Sandra Pinelas and published by Springer Science & Business Media. This book was released on 2013-09-21 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume contains carefully selected papers presented at the International Conference on Differential & Difference Equations and Applications held in Ponta Delgada – Azores, from July 4-8, 2011 in honor of Professor Ravi P. Agarwal. The objective of the gathering was to bring together researchers in the fields of differential & difference equations and to promote the exchange of ideas and research. The papers cover all areas of differential and difference equations with a special emphasis on applications.
Book Synopsis Handbook of Exact Solutions for Ordinary Differential Equations by : Valentin F. Zaitsev
Download or read book Handbook of Exact Solutions for Ordinary Differential Equations written by Valentin F. Zaitsev and published by CRC Press. This book was released on 2002-10-28 with total page 815 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exact solutions of differential equations continue to play an important role in the understanding of many phenomena and processes throughout the natural sciences in that they can verify the correctness of or estimate errors in solutions reached by numerical, asymptotic, and approximate analytical methods. The new edition of this bestselling handboo
Book Synopsis Ordinary Differential Equations and Dynamical Systems by : Thomas C. Sideris
Download or read book Ordinary Differential Equations and Dynamical Systems written by Thomas C. Sideris and published by Springer Science & Business Media. This book was released on 2013-10-17 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a mathematically rigorous introduction to the beautiful subject of ordinary differential equations for beginning graduate or advanced undergraduate students. Students should have a solid background in analysis and linear algebra. The presentation emphasizes commonly used techniques without necessarily striving for completeness or for the treatment of a large number of topics. The first half of the book is devoted to the development of the basic theory: linear systems, existence and uniqueness of solutions to the initial value problem, flows, stability, and smooth dependence of solutions upon initial conditions and parameters. Much of this theory also serves as the paradigm for evolutionary partial differential equations. The second half of the book is devoted to geometric theory: topological conjugacy, invariant manifolds, existence and stability of periodic solutions, bifurcations, normal forms, and the existence of transverse homoclinic points and their link to chaotic dynamics. A common thread throughout the second part is the use of the implicit function theorem in Banach space. Chapter 5, devoted to this topic, the serves as the bridge between the two halves of the book.
Book Synopsis Differential Equations by : Christian Constanda
Download or read book Differential Equations written by Christian Constanda and published by Springer. This book was released on 2017-03-14 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is designed with the needs of today’s student in mind. It is the ideal textbook for a first course in elementary differential equations for future engineers and scientists, including mathematicians. This book is accessible to anyone who has a basic knowledge of precalculus algebra and differential and integral calculus. Its carefully crafted text adopts a concise, simple, no-frills approach to differential equations, which helps students acquire a solid experience in many classical solution techniques. With a lighter accent on the physical interpretation of the results, a more manageable page count than comparable texts, a highly readable style, and over 1000 exercises designed to be solved without a calculating device, this book emphasizes the understanding and practice of essential topics in a succinct yet fully rigorous fashion. Apart from several other enhancements, the second edition contains one new chapter on numerical methods of solution. The book formally splits the "pure" and "applied" parts of the contents by placing the discussion of selected mathematical models in separate chapters. At the end of most of the 246 worked examples, the author provides the commands in Mathematica® for verifying the results. The book can be used independently by the average student to learn the fundamentals of the subject, while those interested in pursuing more advanced material can regard it as an easily taken first step on the way to the next level. Additionally, practitioners who encounter differential equations in their professional work will find this text to be a convenient source of reference.
Book Synopsis Differential Equations by : Allan Struthers
Download or read book Differential Equations written by Allan Struthers and published by Springer. This book was released on 2019-07-31 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to serve as a textbook for a course on ordinary differential equations, which is usually a required course in most science and engineering disciplines and follows calculus courses. The book begins with linear algebra, including a number of physical applications, and goes on to discuss first-order differential equations, linear systems of differential equations, higher order differential equations, Laplace transforms, nonlinear systems of differential equations, and numerical methods used in solving differential equations. The style of presentation of the book ensures that the student with a minimum of assistance may apply the theorems and proofs presented. Liberal use of examples and homework problems aids the student in the study of the topics presented and applying them to numerous applications in the real scientific world. This textbook focuses on the actual solution of ordinary differential equations preparing the student to solve ordinary differential equations when exposed to such equations in subsequent courses in engineering or pure science programs. The book can be used as a text in a one-semester core course on differential equations, alternatively it can also be used as a partial or supplementary text in intensive courses that cover multiple topics including differential equations.
Book Synopsis Ordinary Differential Equations: Basics and Beyond by : David G. Schaeffer
Download or read book Ordinary Differential Equations: Basics and Beyond written by David G. Schaeffer and published by Springer. This book was released on 2016-11-10 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos). While proofs are rigorous, the exposition is reader-friendly, aiming for the informality of face-to-face interactions. A unique feature of this book is the integration of rigorous theory with numerous applications of scientific interest. Besides providing motivation, this synthesis clarifies the theory and enhances scientific literacy. Other features include: (i) a wealth of exercises at various levels, along with commentary that explains why they matter; (ii) figures with consistent color conventions to identify nullclines, periodic orbits, stable and unstable manifolds; and (iii) a dedicated website with software templates, problem solutions, and other resources supporting the text (www.math.duke.edu/ode-book). Given its many applications, the book may be used comfortably in science and engineering courses as well as in mathematics courses. Its level is accessible to upper-level undergraduates but still appropriate for graduate students. The thoughtful presentation, which anticipates many confusions of beginning students, makes the book suitable for a teaching environment that emphasizes self-directed, active learning (including the so-called inverted classroom).
Book Synopsis Existence Theory for Nonlinear Ordinary Differential Equations by : Donal O'Regan
Download or read book Existence Theory for Nonlinear Ordinary Differential Equations written by Donal O'Regan and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: We begin our applications of fixed point methods with existence of solutions to certain first order initial initial value problems. This problem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y'. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de fined either locally or globally on I, according to the assumptions imposed on I. Notice that (1. 1) is a system of first order equations because I takes its values in Rn. In section 3. 2 we will first establish some basic existence theorems which guarantee that a solution to (1. 1) exists for t > 0 and near zero. Familiar examples show that the interval of existence can be arbi trarily short, depending on the initial value r and the nonlinear behaviour of I. As a result we will also examine in section 3. 2 the dependence of the interval of existence on I and r. We mention in passing that, in the results which follow, the interval I can be replaced by any bounded interval and the initial value can be specified at any point in I. The reasoning needed to cover this slightly more general situation requires minor modifications on the arguments given here.
Book Synopsis Ordinary Differential Equations by : Wolfgang Walter
Download or read book Ordinary Differential Equations written by Wolfgang Walter and published by Springer Science & Business Media. This book was released on 2013-03-11 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a translation of the 6th edition of Gewöhnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.
Book Synopsis Differential Equations by : Viorel Barbu
Download or read book Differential Equations written by Viorel Barbu and published by Springer. This book was released on 2016-11-16 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.
Book Synopsis Differential Equations and Applications by : Valarmathi Sigamani
Download or read book Differential Equations and Applications written by Valarmathi Sigamani and published by Springer Nature. This book was released on 2022-01-24 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects select papers presented at the International Conference on Applications of Basic Sciences, held at Tiruchirappalli, Tamil Nadu, India, from 19-21 November 2019. The book discusses topics on singular perturbation problems, differential equations, numerical analysis, fuzzy logics, fuzzy differential equations, and mathematical physics, and their interdisciplinary applications in all areas of basic sciences: mathematics, physics, chemistry, and biology. It will be useful to researchers and scientists in all disciplines of basic sciences. This book will be very useful to know the different scientific approaches for a single physical system.
Book Synopsis Differential Equations: Theory and Applications by : David Betounes
Download or read book Differential Equations: Theory and Applications written by David Betounes and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the theory of ordinary differential equations with a focus on mechanics and dynamical systems as important applications of the theory. The text is written to be used in the traditional way or in a more applied way. The accompanying CD contains Maple worksheets for the exercises, and special Maple code for performing various tasks. In addition to its use in a traditional one or two semester graduate course in mathematics, the book is organized to be used for interdisciplinary courses in applied mathematics, physics, and engineering.
Book Synopsis Differential Equations and Dynamical Systems by : Lawrence Perko
Download or read book Differential Equations and Dynamical Systems written by Lawrence Perko and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.