Variational Methods for Machine Learning with Applications to Deep Networks

Download Variational Methods for Machine Learning with Applications to Deep Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030706796
Total Pages : 173 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Variational Methods for Machine Learning with Applications to Deep Networks by : Lucas Pinheiro Cinelli

Download or read book Variational Methods for Machine Learning with Applications to Deep Networks written by Lucas Pinheiro Cinelli and published by Springer Nature. This book was released on 2021-05-10 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models. Starting from the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and show how Bayesian inference naturally lends itself to this framework. The authors present detailed explanations of the main modern algorithms on variational approximations for Bayesian inference in neural networks. Each algorithm of this selected set develops a distinct aspect of the theory. The book builds from the ground-up well-known deep generative models, such as Variational Autoencoder and subsequent theoretical developments. By also exposing the main issues of the algorithms together with different methods to mitigate such issues, the book supplies the necessary knowledge on generative models for the reader to handle a wide range of data types: sequential or not, continuous or not, labelled or not. The book is self-contained, promptly covering all necessary theory so that the reader does not have to search for additional information elsewhere. Offers a concise self-contained resource, covering the basic concepts to the algorithms for Bayesian Deep Learning; Presents Statistical Inference concepts, offering a set of elucidative examples, practical aspects, and pseudo-codes; Every chapter includes hands-on examples and exercises and a website features lecture slides, additional examples, and other support material.

Variational Methods for Machine Learning with Applications to Deep Networks

Download Variational Methods for Machine Learning with Applications to Deep Networks PDF Online Free

Author :
Publisher :
ISBN 13 : 9783030706807
Total Pages : 0 pages
Book Rating : 4.7/5 (68 download)

DOWNLOAD NOW!


Book Synopsis Variational Methods for Machine Learning with Applications to Deep Networks by : Lucas Pinheiro Cinelli

Download or read book Variational Methods for Machine Learning with Applications to Deep Networks written by Lucas Pinheiro Cinelli and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models. Starting from the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and show how Bayesian inference naturally lends itself to this framework. The authors present detailed explanations of the main modern algorithms on variational approximations for Bayesian inference in neural networks. Each algorithm of this selected set develops a distinct aspect of the theory. The book builds from the ground-up well-known deep generative models, such as Variational Autoencoder and subsequent theoretical developments. By also exposing the main issues of the algorithms together with different methods to mitigate such issues, the book supplies the necessary knowledge on generative models for the reader to handle a wide range of data types: sequential or not, continuous or not, labelled or not. The book is self-contained, promptly covering all necessary theory so that the reader does not have to search for additional information elsewhere. Offers a concise self-contained resource, covering the basic concepts to the algorithms for Bayesian Deep Learning; Presents Statistical Inference concepts, offering a set of elucidative examples, practical aspects, and pseudo-codes; Every chapter includes hands-on examples and exercises and a website features lecture slides, additional examples, and other support material.

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110670925
Total Pages : 208 pages
Book Rating : 4.1/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : Siddhartha Bhattacharyya

Download or read book Deep Learning written by Siddhartha Bhattacharyya and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-06-22 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the fundamentals of deep learning along with reporting on the current state-of-art research on deep learning. In addition, it provides an insight of deep neural networks in action with illustrative coding examples. Deep learning is a new area of machine learning research which has been introduced with the objective of moving ML closer to one of its original goals, i.e. artificial intelligence. Deep learning was developed as an ML approach to deal with complex input-output mappings. While traditional methods successfully solve problems where final value is a simple function of input data, deep learning techniques are able to capture composite relations between non-immediately related fields, for example between air pressure recordings and English words, millions of pixels and textual description, brand-related news and future stock prices and almost all real world problems. Deep learning is a class of nature inspired machine learning algorithms that uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation. Each successive layer uses the output from the previous layer as input. The learning may be supervised (e.g. classification) and/or unsupervised (e.g. pattern analysis) manners. These algorithms learn multiple levels of representations that correspond to different levels of abstraction by resorting to some form of gradient descent for training via backpropagation. Layers that have been used in deep learning include hidden layers of an artificial neural network and sets of propositional formulas. They may also include latent variables organized layer-wise in deep generative models such as the nodes in deep belief networks and deep boltzmann machines. Deep learning is part of state-of-the-art systems in various disciplines, particularly computer vision, automatic speech recognition (ASR) and human action recognition.

Variational Bayes Deep Neural Network

Download Variational Bayes Deep Neural Network PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 153 pages
Book Rating : 4.5/5 (381 download)

DOWNLOAD NOW!


Book Synopsis Variational Bayes Deep Neural Network by : Zihuan Liu

Download or read book Variational Bayes Deep Neural Network written by Zihuan Liu and published by . This book was released on 2021 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian neural networks (BNNs) have achieved state-of-the-art results in a wide range of tasks, especially in high dimensional data analysis, including image recognition, biomedical diagnosis and others. My thesis mainly focuses on high-dimensional data, including simulated data and brain images of Alzheimer's Disease. We develop variational Bayesian deep neural network (VBDNN) and Bayesian compressed neural network (BCNN) and discuss the related statistical theory and algorithmic implementations for predicting MCI-to-dementia conversion in multi-modal data from ADNI.The transition from mild cognitive impairment (MCI) to dementia is of great interest to clinical research on Alzheimer's disease (AD) and related dementias. This phenomenon also serves as a valuable data source for quantitative methodological researchers developing new approaches for classification. The development of VBDNN is motivated by an important biomedical engineering application, namely, building predictive tools for the transition from MCI to dementia. The predictors are multi-modal and may involve complex interactive relations. In Chapter 2, we numerically compare performance accuracy of logistic regression (LR) with support vector machine (SVM) in classifying MCI-to-dementia conversion. The results show that although SVM and other ML techniques are capable of relatively accurate classification, similar or higher accuracy can often be achieved by LR, mitigating SVM's necessity or value for many clinical researchers.Further, when faced with many potential features that could be used for classifying the transition, clinical researchers are often unaware of the relative value of different approaches for variable selection. Other than algorithmic feature selection techniques, manually trimming the list of potential predictor variables can also protect against over-fitting and also offers possible insight into why selected features are important to the model. We demonstrate how similar performance can be achieved using user-guided, clinically informed pre-selection versus algorithmic feature selection techniques. Besides LR and SVM, Bayesian deep neural network (BDNN) has quickly become the most popular machine learning classifier for prediction and classification with ADNI data. However, their Markov Chain Monte Carlo (MCMC) based implementation suffers from high computational cost, limiting this powerful technique in large-scale studies. Variational Bayes (VB) has emerged as a competitive alternative to overcome some of these computational issues. Although the VB is popular in machine learning, neither the computational nor the statistical properties are well understood for complex modeling such as neural networks. First, we model the VBDNN estimation methodology and characterize the prior distributions and the variational family for consistent Bayesian estimation (in Chapter 3). The thesis compares and contrasts the true posterior's consistency and contraction rates for a deep neural network-based classification and the corresponding variational posterior. Based on the complexity of the deep neural network (DNN), this thesis assesses the loss in classification accuracy due to VB's use and guidelines on the characterization of the prior distributions and the variational family. The difficulty of optimization associated with variational Bayes solution has been quantified as a function of the complexity of the DNN. Chapter 4 proposes using a BCNN that takes care of the large p small n problem by projecting the feature space onto a smaller dimensional space using a random projection matrix. In particular, for dimension reduction, we propose randomly compressed feature space instead of other popular dimension reduction techniques. We adopt a model averaging approach to pool information across multiple projections. As the main contribution, we propose the variation Bayes approach to simultaneously estimate both model weights and model-specific parameters. By avoiding using standard Monte Carlo Markov Chain and parallelizing across multiple compression, we reduce both computation and computer storage capacity dramatically with minimum loss in prediction accuracy. We provide theoretical and empirical justifications of our proposed methodology.

An Introduction to Variational Autoencoders

Download An Introduction to Variational Autoencoders PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680836226
Total Pages : 102 pages
Book Rating : 4.8/5 (362 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Variational Autoencoders by : Diederik P. Kingma

Download or read book An Introduction to Variational Autoencoders written by Diederik P. Kingma and published by . This book was released on 2019-11-12 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Variational Autoencoders provides a quick summary for the of a topic that has become an important tool in modern-day deep learning techniques.

The Science of Deep Learning

Download The Science of Deep Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110889044X
Total Pages : 361 pages
Book Rating : 4.1/5 (88 download)

DOWNLOAD NOW!


Book Synopsis The Science of Deep Learning by : Iddo Drori

Download or read book The Science of Deep Learning written by Iddo Drori and published by Cambridge University Press. This book was released on 2022-08-18 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Science of Deep Learning emerged from courses taught by the author that have provided thousands of students with training and experience for their academic studies, and prepared them for careers in deep learning, machine learning, and artificial intelligence in top companies in industry and academia. The book begins by covering the foundations of deep learning, followed by key deep learning architectures. Subsequent parts on generative models and reinforcement learning may be used as part of a deep learning course or as part of a course on each topic. The book includes state-of-the-art topics such as Transformers, graph neural networks, variational autoencoders, and deep reinforcement learning, with a broad range of applications. The appendices provide equations for computing gradients in backpropagation and optimization, and best practices in scientific writing and reviewing. The text presents an up-to-date guide to the field built upon clear visualizations using a unified notation and equations, lowering the barrier to entry for the reader. The accompanying website provides complementary code and hundreds of exercises with solutions.

Advanced Deep Learning with Keras

Download Advanced Deep Learning with Keras PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 178862453X
Total Pages : 369 pages
Book Rating : 4.7/5 (886 download)

DOWNLOAD NOW!


Book Synopsis Advanced Deep Learning with Keras by : Rowel Atienza

Download or read book Advanced Deep Learning with Keras written by Rowel Atienza and published by Packt Publishing Ltd. This book was released on 2018-10-31 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding and coding advanced deep learning algorithms with the most intuitive deep learning library in existence Key Features Explore the most advanced deep learning techniques that drive modern AI results Implement deep neural networks, autoencoders, GANs, VAEs, and deep reinforcement learning A wide study of GANs, including Improved GANs, Cross-Domain GANs, and Disentangled Representation GANs Book DescriptionRecent developments in deep learning, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Deep Reinforcement Learning (DRL) are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like. Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques. The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You’ll learn how to implement deep learning models with Keras and TensorFlow 1.x, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You then learn all about GANs, and how they can open new levels of AI performance. Next, you’ll get up to speed with how VAEs are implemented, and you’ll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.What you will learn Cutting-edge techniques in human-like AI performance Implement advanced deep learning models using Keras The building blocks for advanced techniques - MLPs, CNNs, and RNNs Deep neural networks – ResNet and DenseNet Autoencoders and Variational Autoencoders (VAEs) Generative Adversarial Networks (GANs) and creative AI techniques Disentangled Representation GANs, and Cross-Domain GANs Deep reinforcement learning methods and implementation Produce industry-standard applications using OpenAI Gym Deep Q-Learning and Policy Gradient Methods Who this book is for Some fluency with Python is assumed. As an advanced book, you'll be familiar with some machine learning approaches, and some practical experience with DL will be helpful. Knowledge of Keras or TensorFlow 1.x is not required but would be helpful.

Machine Learning

Download Machine Learning PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128188049
Total Pages : 1160 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning by : Sergios Theodoridis

Download or read book Machine Learning written by Sergios Theodoridis and published by Academic Press. This book was released on 2020-02-19 with total page 1160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning: A Bayesian and Optimization Perspective, 2nd edition, gives a unified perspective on machine learning by covering both pillars of supervised learning, namely regression and classification. The book starts with the basics, including mean square, least squares and maximum likelihood methods, ridge regression, Bayesian decision theory classification, logistic regression, and decision trees. It then progresses to more recent techniques, covering sparse modelling methods, learning in reproducing kernel Hilbert spaces and support vector machines, Bayesian inference with a focus on the EM algorithm and its approximate inference variational versions, Monte Carlo methods, probabilistic graphical models focusing on Bayesian networks, hidden Markov models and particle filtering. Dimensionality reduction and latent variables modelling are also considered in depth. This palette of techniques concludes with an extended chapter on neural networks and deep learning architectures. The book also covers the fundamentals of statistical parameter estimation, Wiener and Kalman filtering, convexity and convex optimization, including a chapter on stochastic approximation and the gradient descent family of algorithms, presenting related online learning techniques as well as concepts and algorithmic versions for distributed optimization. Focusing on the physical reasoning behind the mathematics, without sacrificing rigor, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. Most of the chapters include typical case studies and computer exercises, both in MATLAB and Python. The chapters are written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as courses on sparse modeling, deep learning, and probabilistic graphical models. New to this edition: Complete re-write of the chapter on Neural Networks and Deep Learning to reflect the latest advances since the 1st edition. The chapter, starting from the basic perceptron and feed-forward neural networks concepts, now presents an in depth treatment of deep networks, including recent optimization algorithms, batch normalization, regularization techniques such as the dropout method, convolutional neural networks, recurrent neural networks, attention mechanisms, adversarial examples and training, capsule networks and generative architectures, such as restricted Boltzman machines (RBMs), variational autoencoders and generative adversarial networks (GANs). Expanded treatment of Bayesian learning to include nonparametric Bayesian methods, with a focus on the Chinese restaurant and the Indian buffet processes. Presents the physical reasoning, mathematical modeling and algorithmic implementation of each method Updates on the latest trends, including sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling Provides case studies on a variety of topics, including protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, and more

Adversarial Machine Learning

Download Adversarial Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030997723
Total Pages : 316 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Adversarial Machine Learning by : Aneesh Sreevallabh Chivukula

Download or read book Adversarial Machine Learning written by Aneesh Sreevallabh Chivukula and published by Springer Nature. This book was released on 2023-03-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.

From Schrödinger's Equation to Deep Learning

Download From Schrödinger's Equation to Deep Learning PDF Online Free

Author :
Publisher : Independently Published
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.8/5 (58 download)

DOWNLOAD NOW!


Book Synopsis From Schrödinger's Equation to Deep Learning by : N B Singh

Download or read book From Schrödinger's Equation to Deep Learning written by N B Singh and published by Independently Published. This book was released on 2023-07-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "From Schrödinger's Equation to Deep Learning: A Quantum Approach" is a comprehensive book that explores the fascinating intersection of quantum mechanics and deep learning. It provides a detailed overview of both quantum mechanics and deep learning, highlighting their fundamental principles, techniques, and applications. The book begins with an introduction that sets the stage for understanding the quantum revolution and the rise of deep learning, emphasizing the need to bridge the gap between these two fields. It then delves into the fundamentals of quantum mechanics, covering topics such as wave-particle duality, Schrödinger's equation, quantum states and operators, measurement, quantum superposition, and entanglement. Next, the book introduces the reader to the field of quantum computing, providing a primer on classical computing and a thorough explanation of quantum computing principles, including quantum gates, circuits, algorithms, error correction, and hardware implementations. The heart of the book explores the emerging field of quantum machine learning, discussing various quantum-inspired paradigms, feature spaces, quantum neural networks, support vector machines, generative models, and reinforcement learning algorithms. It also explores the potential of quantum-inspired deep learning approaches, showcasing how concepts from quantum computing can be leveraged to enhance classical deep learning models. The book further explores hybrid quantum-classical approaches, such as variational quantum eigensolvers, quantum approximate optimization algorithms, and quantum-classical hybrid neural networks. It discusses the integration of quantum computing techniques with classical machine learning methods, highlighting applications in data preprocessing, transfer learning, and reinforcement learning with classical feedback. The latter part of the book focuses on applications of quantum deep learning across various domains. It explores the use of quantum deep learning in quantum chemistry and drug discovery, image and speech recognition, financial modeling, natural language processing, robotics, and autonomous systems. It also discusses the potential of quantum computing specifically tailored for quantum machine learning tasks. The book concludes with a discussion on the current challenges and future directions of quantum deep learning, considering the ethical and societal implications of this rapidly evolving field. It offers insights into potential developments and leaves readers with a comprehensive understanding of the subject matter. With a blend of theory, practical examples, and real-world applications, "From Schrödinger's Equation to Deep Learning: A Quantum Approach" serves as a valuable resource for researchers, students, and professionals interested in the intersection of quantum mechanics and deep learning, enabling them to explore the potential of this groundbreaking fusion of disciplines.

The Theory of Perfect Learning

Download The Theory of Perfect Learning PDF Online Free

Author :
Publisher : Nonvikan Karl-Augustt Alahassa
ISBN 13 :
Total Pages : 227 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis The Theory of Perfect Learning by : Nonvikan Karl-Augustt Alahassa

Download or read book The Theory of Perfect Learning written by Nonvikan Karl-Augustt Alahassa and published by Nonvikan Karl-Augustt Alahassa. This book was released on 2021-08-17 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: The perfect learning exists. We mean a learning model that can be generalized, and moreover, that can always fit perfectly the test data, as well as the training data. We have performed in this thesis many experiments that validate this concept in many ways. The tools are given through the chapters that contain our developments. The classical Multilayer Feedforward model has been re-considered and a novel $N_k$-architecture is proposed to fit any multivariate regression task. This model can easily be augmented to thousands of possible layers without loss of predictive power, and has the potential to overcome our difficulties simultaneously in building a model that has a good fit on the test data, and don't overfit. His hyper-parameters, the learning rate, the batch size, the number of training times (epochs), the size of each layer, the number of hidden layers, all can be chosen experimentally with cross-validation methods. There is a great advantage to build a more powerful model using mixture models properties. They can self-classify many high dimensional data in a few numbers of mixture components. This is also the case of the Shallow Gibbs Network model that we built as a Random Gibbs Network Forest to reach the performance of the Multilayer feedforward Neural Network in a few numbers of parameters, and fewer backpropagation iterations. To make it happens, we propose a novel optimization framework for our Bayesian Shallow Network, called the {Double Backpropagation Scheme} (DBS) that can also fit perfectly the data with appropriate learning rate, and which is convergent and universally applicable to any Bayesian neural network problem. The contribution of this model is broad. First, it integrates all the advantages of the Potts Model, which is a very rich random partitions model, that we have also modified to propose its Complete Shrinkage version using agglomerative clustering techniques. The model takes also an advantage of Gibbs Fields for its weights precision matrix structure, mainly through Markov Random Fields, and even has five (5) variants structures at the end: the Full-Gibbs, the Sparse-Gibbs, the Between layer Sparse Gibbs which is the B-Sparse Gibbs in a short, the Compound Symmetry Gibbs (CS-Gibbs in short), and the Sparse Compound Symmetry Gibbs (Sparse-CS-Gibbs) model. The Full-Gibbs is mainly to remind fully-connected models, and the other structures are useful to show how the model can be reduced in terms of complexity with sparsity and parsimony. All those models have been experimented, and the results arouse interest in those structures, in a sense that different structures help to reach different results in terms of Mean Squared Error (MSE) and Relative Root Mean Squared Error (RRMSE). For the Shallow Gibbs Network model, we have found the perfect learning framework : it is the $(l_1, \boldsymbol{\zeta}, \epsilon_{dbs})-\textbf{DBS}$ configuration, which is a combination of the \emph{Universal Approximation Theorem}, and the DBS optimization, coupled with the (\emph{dist})-Nearest Neighbor-(h)-Taylor Series-Perfect Multivariate Interpolation (\emph{dist}-NN-(h)-TS-PMI) model [which in turn is a combination of the research of the Nearest Neighborhood for a good Train-Test association, the Taylor Approximation Theorem, and finally the Multivariate Interpolation Method]. It indicates that, with an appropriate number $l_1$ of neurons on the hidden layer, an optimal number $\zeta$ of DBS updates, an optimal DBS learnnig rate $\epsilon_{dbs}$, an optimal distance \emph{dist}$_{opt}$ in the research of the nearest neighbor in the training dataset for each test data $x_i^{\mbox{test}}$, an optimal order $h_{opt}$ of the Taylor approximation for the Perfect Multivariate Interpolation (\emph{dist}-NN-(h)-TS-PMI) model once the {\bfseries DBS} has overfitted the training dataset, the train and the test error converge to zero (0). As the Potts Models and many random Partitions are based on a similarity measure, we open the door to find \emph{sufficient} invariants descriptors in any recognition problem for complex objects such as image; using \emph{metric} learning and invariance descriptor tools, to always reach 100\% accuracy. This is also possible with invariant networks that are also universal approximators. Our work closes the gap between the theory and the practice in artificial intelligence, in a sense that it confirms that it is possible to learn with very small error allowed.

Graphical Models for Machine Learning and Digital Communication

Download Graphical Models for Machine Learning and Digital Communication PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262062022
Total Pages : 230 pages
Book Rating : 4.0/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Graphical Models for Machine Learning and Digital Communication by : Brendan J. Frey

Download or read book Graphical Models for Machine Learning and Digital Communication written by Brendan J. Frey and published by MIT Press. This book was released on 1998 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Content Description. #Includes bibliographical references and index.

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262337371
Total Pages : 801 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : Ian Goodfellow

Download or read book Deep Learning written by Ian Goodfellow and published by MIT Press. This book was released on 2016-11-10 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Variational Bayesian Learning Theory

Download Variational Bayesian Learning Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107076153
Total Pages : 561 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Variational Bayesian Learning Theory by : Shinichi Nakajima

Download or read book Variational Bayesian Learning Theory written by Shinichi Nakajima and published by Cambridge University Press. This book was released on 2019-07-11 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the theory of variational Bayesian learning summarizes recent developments and suggests practical applications.

Machine Learning Algorithms in Depth

Download Machine Learning Algorithms in Depth PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638355576
Total Pages : 0 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Algorithms in Depth by : Vadim Smolyakov

Download or read book Machine Learning Algorithms in Depth written by Vadim Smolyakov and published by Simon and Schuster. This book was released on 2024-10-22 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how machine learning algorithms work from the ground up so you can effectively troubleshoot your models and improve their performance. Fully understanding how machine learning algorithms function is essential for any serious ML engineer. In Machine Learning Algorithms in Depth you’ll explore practical implementations of dozens of ML algorithms including: • Monte Carlo Stock Price Simulation • Image Denoising using Mean-Field Variational Inference • EM algorithm for Hidden Markov Models • Imbalanced Learning, Active Learning and Ensemble Learning • Bayesian Optimization for Hyperparameter Tuning • Dirichlet Process K-Means for Clustering Applications • Stock Clusters based on Inverse Covariance Estimation • Energy Minimization using Simulated Annealing • Image Search based on ResNet Convolutional Neural Network • Anomaly Detection in Time-Series using Variational Autoencoders Machine Learning Algorithms in Depth dives into the design and underlying principles of some of the most exciting machine learning (ML) algorithms in the world today. With a particular emphasis on probabilistic algorithms, you’ll learn the fundamentals of Bayesian inference and deep learning. You’ll also explore the core data structures and algorithmic paradigms for machine learning. Each algorithm is fully explored with both math and practical implementations so you can see how they work and how they’re put into action. About the technology Learn how machine learning algorithms work from the ground up so you can effectively troubleshoot your models and improve their performance. This book guides you from the core mathematical foundations of the most important ML algorithms to their Python implementations, with a particular focus on probability-based methods. About the book Machine Learning Algorithms in Depth dissects and explains dozens of algorithms across a variety of applications, including finance, computer vision, and NLP. Each algorithm is mathematically derived, followed by its hands-on Python implementation along with insightful code annotations and informative graphics. You’ll especially appreciate author Vadim Smolyakov’s clear interpretations of Bayesian algorithms for Monte Carlo and Markov models. What's inside • Monte Carlo stock price simulation • EM algorithm for hidden Markov models • Imbalanced learning, active learning, and ensemble learning • Bayesian optimization for hyperparameter tuning • Anomaly detection in time-series About the reader For machine learning practitioners familiar with linear algebra, probability, and basic calculus. About the author Vadim Smolyakov is a data scientist in the Enterprise & Security DI R&D team at Microsoft. Table of Contents PART 1 1 Machine learning algorithms 2 Markov chain Monte Carlo 3 Variational inference 4 Software implementation PART 2 5 Classification algorithms 6 Regression algorithms 7 Selected supervised learning algorithms PART 3 8 Fundamental unsupervised learning algorithms 9 Selected unsupervised learning algorithms PART 4 10 Fundamental deep learning algorithms 11 Advanced deep learning algorithms

Advances in Hybridization of Intelligent Methods

Download Advances in Hybridization of Intelligent Methods PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319667904
Total Pages : 155 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Advances in Hybridization of Intelligent Methods by : Ioannis Hatzilygeroudis

Download or read book Advances in Hybridization of Intelligent Methods written by Ioannis Hatzilygeroudis and published by Springer. This book was released on 2017-10-13 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent research on the hybridization of intelligent methods, which refers to combining methods to solve complex problems. It discusses hybrid approaches covering different areas of intelligent methods and technologies, such as neural networks, swarm intelligence, machine learning, reinforcement learning, deep learning, agent-based approaches, knowledge-based system and image processing. The book includes extended and revised versions of invited papers presented at the 6th International Workshop on Combinations of Intelligent Methods and Applications (CIMA 2016), held in The Hague, Holland, in August 2016. The book is intended for researchers and practitioners from academia and industry interested in using hybrid methods for solving complex problems.

Deep Neural Networks and Tabular Data

Download Deep Neural Networks and Tabular Data PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (139 download)

DOWNLOAD NOW!


Book Synopsis Deep Neural Networks and Tabular Data by : Vadim Borisov

Download or read book Deep Neural Networks and Tabular Data written by Vadim Borisov and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last decade, deep neural networks have enabled remarkable technological advancements, potentially transforming a wide range of aspects of our lives in the future. It is becoming increasingly common for deep-learning models to be used in a variety of situations in the modern life, ranging from search and recommendations to financial and healthcare solutions, and the number of applications utilizing deep neural networks is still on the rise. However, a lot of recent research efforts in deep learning have focused primarily on neural networks and domains in which they excel. This includes computer vision, audio processing, and natural language processing. It is a general tendency for data in these areas to be homogeneous, whereas heterogeneous tabular datasets have received relatively scant attention despite the fact that they are extremely prevalent. In fact, more than half of the datasets on the Google dataset platform are structured and can be represented in a tabular form. The first aim of this study is to provide a thoughtful and comprehensive analysis of deep neural networks' application to modeling and generating tabular data. Apart from that, an open-source performance benchmark on tabular data is presented, where we thoroughly compare over twenty machine and deep learning models on heterogeneous tabular datasets. The second contribution relates to synthetic tabular data generation. Inspired by their success in other homogeneous data modalities, deep generative models such as variational autoencoders and generative adversarial networks are also commonly applied for tabular data generation. However, the use of Transformer-based large language models (which are also generative) for tabular data generation have been received scant research attention. Our contribution to this literature consists of the development of a novel method for generating tabular data based on this family of autoregressive generative models that, on multiple challenging benchmarks, outperformed the current state-of-the-art methods for tabular data generation. Another crucial aspect for a deep-learning data system is that it needs to be reliable and trustworthy to gain broader acceptance in practice, especially in life-critical fields. One of the possible ways to bring trust into a data-driven system is to use explainable machine-learning methods. In spite of this, the current explanation methods often fail to provide robust explanations due to their high sensitivity to the hyperparameter selection or even changes of the random seed. Furthermore, most of these methods are based on feature-wise importance, ignoring the crucial relationship between variables in a sample. The third aim of this work is to address both of these issues by offering more robust and stable explanations, as well as taking into account the relationships between variables using a graph structure. In summary, this thesis made a significant contribution that touched many areas related to deep neural networks and heterogeneous tabular data as well as the usage of explainable machine learning methods.