Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Variational Method And Method Of Monotone Operators In The Theory Of Nonlinear Equations
Download Variational Method And Method Of Monotone Operators In The Theory Of Nonlinear Equations full books in PDF, epub, and Kindle. Read online Variational Method And Method Of Monotone Operators In The Theory Of Nonlinear Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations by : Mordukhaĭ Moiseevich Vaĭnberg
Download or read book Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations written by Mordukhaĭ Moiseevich Vaĭnberg and published by John Wiley & Sons. This book was released on 1974 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Author :Zdzislaw Denkowski Publisher :Springer Science & Business Media ISBN 13 :9780306474569 Total Pages :844 pages Book Rating :4.4/5 (745 download)
Book Synopsis An Introduction to Nonlinear Analysis: Applications by : Zdzislaw Denkowski
Download or read book An Introduction to Nonlinear Analysis: Applications written by Zdzislaw Denkowski and published by Springer Science & Business Media. This book was released on 2003-01-31 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an exposition of the main applications of Nonlinear Analysis, beginning with a chapter on Nonlinear Operators and Fixed Points, a connecting point and bridge from Nonlinear Analysis theory to its applications. The topics covered include applications to ordinary and partial differential equations, optimization, optimal control, calculus of variations and mathematical economics. The presentation is supplemented with the inclusion of many exercises and their solutions.
Book Synopsis An Invitation to Variational Methods in Differential Equations by : David G. Costa
Download or read book An Invitation to Variational Methods in Differential Equations written by David G. Costa and published by Springer Science & Business Media. This book was released on 2010-04-30 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces variational methods and their applications to differential equations to graduate students and researchers interested in differential equations and nonlinear analysis. It serves as a sampling of topics in critical point theory. Coverage includes: minimizations, deformations results, the mountain-pass and saddle-point theorems, critical points under constraints, and issues of compactness. Applications immediately follow each result for easy assimilation by the reader. This straightforward and systematic presentation includes many exercises and examples to motivate the study of variational methods.
Book Synopsis Variational Methods in Theoretical Mechanics by : J.T. Oden
Download or read book Variational Methods in Theoretical Mechanics written by J.T. Oden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook written for use in a graduate-level course for students of mechanics and engineering science. It is designed to cover the essential features of modern variational methods and to demonstrate how a number of basic mathematical concepts can be used to produce a unified theory of variational mechanics. As prerequisite to using this text, we assume that the student is equipped with an introductory course in functional analysis at a level roughly equal to that covered, for example, in Kolmogorov and Fomin (Functional Analysis, Vol. I, Graylock, Rochester, 1957) and possibly a graduate-level course in continuum mechanics. Numerous references to supplementary material are listed throughout the book. We are indebted to Professor Jim Douglas of the University of Chicago, who read an earlier version of the manuscript and whose detailed suggestions were extremely helpful in preparing the final draft. We also gratefully acknowedge that much of our own research work on va ri at i ona 1 theory was supported by the U. S. Ai r Force Offi ce of Scientific Research. We are indebted to Mr. Ming-Goei Sheu for help in proofreading. Finally, we wish to express thanks to Mrs. Marilyn Gude for her excellent and painstaking job of typing the manuscript. This revised edition contains only minor revisions of the first. Some misprints and errors have been corrected, and some sections were deleted, which were felt to be out of date.
Book Synopsis Encyclopaedia of Mathematics by : M. Hazewinkel
Download or read book Encyclopaedia of Mathematics written by M. Hazewinkel and published by Springer. This book was released on 2013-12-01 with total page 932 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Encyclopaedia of Mathematics by : Michiel Hazewinkel
Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Book Synopsis Variational Methods in Mathematical Physics by : Philippe Blanchard
Download or read book Variational Methods in Mathematical Physics written by Philippe Blanchard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition (in German) had the prevailing character of a textbook owing to the choice of material and the manner of its presentation. This second (translated, revised, and extended) edition, however, includes in its new parts considerably more recent and advanced results and thus goes partially beyond the textbook level. We should emphasize here that the primary intentions of this book are to provide (so far as possible given the restrictions of space) a selfcontained presentation of some modern developments in the direct methods of the cal culus of variations in applied mathematics and mathematical physics from a unified point of view and to link it to the traditional approach. These modern developments are, according to our background and interests: (i) Thomas-Fermi theory and related theories, and (ii) global systems of semilinear elliptic partial-differential equations and the existence of weak solutions and their regularity. Although the direct method in the calculus of variations can naturally be considered part of nonlinear functional analysis, we have not tried to present our material in this way. Some recent books on nonlinear functional analysis in this spirit are those by K. Deimling (Nonlinear Functional Analysis, Springer, Berlin Heidelberg 1985) and E. Zeidler (Nonlinear Functional Analysis and Its Applications, Vols. 1-4; Springer, New York 1986-1990).
Book Synopsis Inequality Problems in Mechanics and Applications by : P.D. Panagiotopoulos
Download or read book Inequality Problems in Mechanics and Applications written by P.D. Panagiotopoulos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a remarkably short time, the field of inequality problems has seen considerable development in mathematics and theoretical mechanics. Applied mechanics and the engineering sciences have also benefitted from these developments in that open problems have been treated and entirely new classes of problems have been formulated and solved. This book is an outgrowth of seven years of seminars and courses on inequality problems in mechanics for a variety of audiences in the Technical University of Aachen, the Aristotle University of Thessaloniki, the University of Hamburg and the Technical University of Milan. The book is intended for a variety of readers, mathematicians and engineers alike, as is detailed in the Guidelines for the Reader. It goes without saying that the work of G. Fichera, J. L. Lions, G. Maier, J. J. Moreau in originating and developing the theory of inequality problems has considerably influenced the present book. I also wish to acknowledge the helpful comments received from C. Bisbos, J. Haslinger, B. Kawohl, H. Matthies, H. O. May, D. Talaslidis and B. Werner. Credit is also due to G. Kyriakopoulos and T. Mandopoulou for their exceptionally diligent work in the preparation of the fmal figures. Many thanks are also due to T. Finnegan and J. Gateley for their friendly assistance from the linguistic standpoint. I would also like to thank my editors in Birkhiiuser Verlag for their cooperation, and all those who helped in the preparation of the manuscript.
Book Synopsis Partial Integral Operators and Integro-Differential Equations by : Jurgen Appell
Download or read book Partial Integral Operators and Integro-Differential Equations written by Jurgen Appell and published by CRC Press. This book was released on 2000-02-29 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained account of integro-differential equations of the Barbashin type and partial integral operators. It presents the basic theory of Barbashin equations in spaces of continuous or measurable functions, including existence, uniqueness, stability and perturbation results. The theory and applications of partial integral operators and linear and nonlinear equations is discussed. Topics range from abstract functional-analytic approaches to specific uses in continuum mechanics and engineering.
Book Synopsis Contact Problems in Elasticity by : N. Kikuchi
Download or read book Contact Problems in Elasticity written by N. Kikuchi and published by SIAM. This book was released on 1988-01-01 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contact of one deformable body with another lies at the heart of almost every mechanical structure. Here, in a comprehensive treatment, two of the field's leading researchers present a systematic approach to contact problems. Using variational formulations, Kikuchi and Oden derive a multitude of new results, both for classical problems and for nonlinear problems involving large deflections and buckling of thin plates with unilateral supports, dry friction with nonclassical laws, large elastic and elastoplastic deformations with frictional contact, dynamic contacts with dynamic frictional effects, and rolling contacts. This method exposes properties of solutions obscured by classical methods, and it provides a basis for the development of powerful numerical schemes.
Book Synopsis Nonlinear Functional Analysis by : Klaus Deimling
Download or read book Nonlinear Functional Analysis written by Klaus Deimling and published by Courier Corporation. This book was released on 2013-10-09 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text offers a survey of the main ideas, concepts, and methods that constitute nonlinear functional analysis. It features extensive commentary, many examples, and interesting, challenging exercises. 1985 edition.
Book Synopsis Introduction to Numerical Linear Algebra and Optimisation by : Philippe G. Ciarlet
Download or read book Introduction to Numerical Linear Algebra and Optimisation written by Philippe G. Ciarlet and published by Cambridge University Press. This book was released on 1989-08-25 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to give a thorough introduction to the most commonly used methods of numerical linear algebra and optimisation. The prerequisites are some familiarity with the basic properties of matrices, finite-dimensional vector spaces, advanced calculus, and some elementary notations from functional analysis. The book is in two parts. The first deals with numerical linear algebra (review of matrix theory, direct and iterative methods for solving linear systems, calculation of eigenvalues and eigenvectors) and the second, optimisation (general algorithms, linear and nonlinear programming). The author has based the book on courses taught for advanced undergraduate and beginning graduate students and the result is a well-organised and lucid exposition. Summaries of basic mathematics are provided, proofs of theorems are complete yet kept as simple as possible, and applications from physics and mechanics are discussed. Professor Ciarlet has also helpfully provided over 40 line diagrams, a great many applications, and a useful guide to further reading. This excellent textbook, which is translated and revised from the very successful French edition, will be of great value to students of numerical analysis, applied mathematics and engineering.
Book Synopsis Fundamentals of Applied Functional Analysis by : Dragisa Mitrovic
Download or read book Fundamentals of Applied Functional Analysis written by Dragisa Mitrovic and published by CRC Press. This book was released on 1997-11-12 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an introduction to modern concepts of linear and nonlinear functional analysis. Its purpose is also to provide an insight into the variety of deeply interlaced mathematical tools applied in the study of nonlinear problems.
Book Synopsis Real and Functional Analysis by : Vladimir I. Bogachev
Download or read book Real and Functional Analysis written by Vladimir I. Bogachev and published by Springer Nature. This book was released on 2020-02-25 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lectures given at "Mekhmat", the Department of Mechanics and Mathematics at Moscow State University, one of the top mathematical departments worldwide, with a rich tradition of teaching functional analysis. Featuring an advanced course on real and functional analysis, the book presents not only core material traditionally included in university courses of different levels, but also a survey of the most important results of a more subtle nature, which cannot be considered basic but which are useful for applications. Further, it includes several hundred exercises of varying difficulty with tips and references. The book is intended for graduate and PhD students studying real and functional analysis as well as mathematicians and physicists whose research is related to functional analysis.
Book Synopsis Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems by : Dumitru Motreanu
Download or read book Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems written by Dumitru Motreanu and published by Springer Science & Business Media. This book was released on 2013-11-19 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on nonlinear boundary value problems and the aspects of nonlinear analysis which are necessary to their study. The authors first give a comprehensive introduction to the many different classical methods from nonlinear analysis, variational principles, and Morse theory. They then provide a rigorous and detailed treatment of the relevant areas of nonlinear analysis with new applications to nonlinear boundary value problems for both ordinary and partial differential equations. Recent results on the existence and multiplicity of critical points for both smooth and nonsmooth functional, developments on the degree theory of monotone type operators, nonlinear maximum and comparison principles for p-Laplacian type operators, and new developments on nonlinear Neumann problems involving non-homogeneous differential operators appear for the first time in book form. The presentation is systematic, and an extensive bibliography and a remarks section at the end of each chapter highlight the text. This work will serve as an invaluable reference for researchers working in nonlinear analysis and partial differential equations as well as a useful tool for all those interested in the topics presented.
Book Synopsis Optimization in Solving Elliptic Problems by : Eugene G. D'yakonov
Download or read book Optimization in Solving Elliptic Problems written by Eugene G. D'yakonov and published by CRC Press. This book was released on 2018-05-04 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization in Solving Elliptic Problems focuses on one of the most interesting and challenging problems of computational mathematics - the optimization of numerical algorithms for solving elliptic problems. It presents detailed discussions of how asymptotically optimal algorithms may be applied to elliptic problems to obtain numerical solutions meeting certain specified requirements. Beginning with an outline of the fundamental principles of numerical methods, this book describes how to construct special modifications of classical finite element methods such that for the arising grid systems, asymptotically optimal iterative methods can be applied. Optimization in Solving Elliptic Problems describes the construction of computational algorithms resulting in the required accuracy of a solution and having a pre-determined computational complexity. Construction of asymptotically optimal algorithms is demonstrated for multi-dimensional elliptic boundary value problems under general conditions. In addition, algorithms are developed for eigenvalue problems and Navier-Stokes problems. The development of these algorithms is based on detailed discussions of topics that include accuracy estimates of projective and difference methods, topologically equivalent grids and triangulations, general theorems on convergence of iterative methods, mixed finite element methods for Stokes-type problems, methods of solving fourth-order problems, and methods for solving classical elasticity problems. Furthermore, the text provides methods for managing basic iterative methods such as domain decomposition and multigrid methods. These methods, clearly developed and explained in the text, may be used to develop algorithms for solving applied elliptic problems. The mathematics necessary to understand the development of such algorithms is provided in the introductory material within the text, and common specifications of algorithms that have been developed for typical problems in mathema
Book Synopsis Research Topics in Analysis, Volume I by : Shouchuan Hu
Download or read book Research Topics in Analysis, Volume I written by Shouchuan Hu and published by Springer Nature. This book was released on 2022-11-29 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, which is the first of two volumes, presents, in a unique way, some of the most relevant research tools of modern analysis. This work empowers young researchers with all the necessary techniques to explore the various subfields of this broad subject, and introduces relevant frameworks where these tools can be immediately deployed. Volume I starts with the foundations of modern analysis. The first three chapters are devoted to topology, measure theory, and functional analysis. Chapter 4 offers a comprehensive analysis of the main function spaces, while Chapter 5 covers more concrete subjects, like multivariate analysis, which are closely related to applications and more difficult to find in compact form. Chapter 6 deals with smooth and non-smooth calculus of functions; Chapter 7 introduces certain important classes of nonlinear operators; and Chapter 8 complements the previous three chapters with topics of variational analysis. Each chapter of this volume finishes with a list of problems – handy for understanding and self-study – and historical notes that give the reader a more vivid picture of how the theory developed. Volume II consists of various applications using the tools and techniques developed in this volume. By offering a clear and wide picture of the tools and applications of modern analysis, this work can be of great benefit not only to mature graduate students seeking topics for research, but also to experienced researchers with an interest in this vast and rich field of mathematics.