Smoothing and Regression

Download Smoothing and Regression PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118763300
Total Pages : 682 pages
Book Rating : 4.1/5 (187 download)

DOWNLOAD NOW!


Book Synopsis Smoothing and Regression by : Michael G. Schimek

Download or read book Smoothing and Regression written by Michael G. Schimek and published by John Wiley & Sons. This book was released on 2013-05-29 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to a wide variety of univariate and multivariate smoothing techniques for regression Smoothing and Regression: Approaches, Computation, and Application bridges the many gaps that exist among competing univariate and multivariate smoothing techniques. It introduces, describes, and in some cases compares a large number of the latest and most advanced techniques for regression modeling. Unlike many other volumes on this topic, which are highly technical and specialized, this book discusses all methods in light of both computational efficiency and their applicability for real data analysis. Using examples of applications from the biosciences, environmental sciences, engineering, and economics, as well as medical research and marketing, this volume addresses the theory, computation, and application of each approach. A number of the techniques discussed, such as smoothing under shape restrictions or of dependent data, are presented for the first time in book form. Special features of this book include: * Comprehensive coverage of smoothing and regression with software hints and applications from a wide variety of disciplines * A unified, easy-to-follow format * Contributions from more than 25 leading researchers from around the world * More than 150 illustrations also covering new graphical techniques important for exploratory data analysis and visualization of high-dimensional problems * Extensive end-of-chapter references For professionals and aspiring professionals in statistics, applied mathematics, computer science, and econometrics, as well as for researchers in the applied and social sciences, Smoothing and Regression is a unique and important new resource destined to become one the most frequently consulted references in the field.

Hands-On Machine Learning with R

Download Hands-On Machine Learning with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000730433
Total Pages : 373 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Machine Learning with R by : Brad Boehmke

Download or read book Hands-On Machine Learning with R written by Brad Boehmke and published by CRC Press. This book was released on 2019-11-07 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.

Generalized Additive Models

Download Generalized Additive Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498728340
Total Pages : 476 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Generalized Additive Models by : Simon N. Wood

Download or read book Generalized Additive Models written by Simon N. Wood and published by CRC Press. This book was released on 2017-05-18 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary background in linear models, linear mixed models, and generalized linear models (GLMs), before presenting a balanced treatment of the theory and applications of GAMs and related models. The author bases his approach on a framework of penalized regression splines, and while firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of R software helps explain the theory and illustrates the practical application of the methodology. Each chapter contains an extensive set of exercises, with solutions in an appendix or in the book’s R data package gamair, to enable use as a course text or for self-study. Simon N. Wood is a professor of Statistical Science at the University of Bristol, UK, and author of the R package mgcv.

Journal of the American Statistical Association

Download Journal of the American Statistical Association PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 764 pages
Book Rating : 4.:/5 (318 download)

DOWNLOAD NOW!


Book Synopsis Journal of the American Statistical Association by :

Download or read book Journal of the American Statistical Association written by and published by . This book was released on 2007 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: A scientific and educational journal not only for professional statisticians but also for economists, business executives, research directors, government officials, university professors, and others who are seriously interested in the application of statistical methods to practical problems, in the development of more useful methods, and in the improvement of basic statistical data.

Handbook of Statistical Analysis and Data Mining Applications

Download Handbook of Statistical Analysis and Data Mining Applications PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0124166458
Total Pages : 824 pages
Book Rating : 4.1/5 (241 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Statistical Analysis and Data Mining Applications by : Ken Yale

Download or read book Handbook of Statistical Analysis and Data Mining Applications written by Ken Yale and published by Elsevier. This book was released on 2017-11-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Generalized Additive Models

Download Generalized Additive Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1584884746
Total Pages : 412 pages
Book Rating : 4.5/5 (848 download)

DOWNLOAD NOW!


Book Synopsis Generalized Additive Models by : Simon Wood

Download or read book Generalized Additive Models written by Simon Wood and published by CRC Press. This book was released on 2006-02-27 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in widespread use, generalized additive models (GAMs) have evolved into a standard statistical methodology of considerable flexibility. While Hastie and Tibshirani's outstanding 1990 research monograph on GAMs is largely responsible for this, there has been a long-standing need for an accessible introductory treatment of the subject that also emphasizes recent penalized regression spline approaches to GAMs and the mixed model extensions of these models. Generalized Additive Models: An Introduction with R imparts a thorough understanding of the theory and practical applications of GAMs and related advanced models, enabling informed use of these very flexible tools. The author bases his approach on a framework of penalized regression splines, and builds a well-grounded foundation through motivating chapters on linear and generalized linear models. While firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of the freely available R software helps explain the theory and illustrates the practicalities of linear, generalized linear, and generalized additive models, as well as their mixed effect extensions. The treatment is rich with practical examples, and it includes an entire chapter on the analysis of real data sets using R and the author's add-on package mgcv. Each chapter includes exercises, for which complete solutions are provided in an appendix. Concise, comprehensive, and essentially self-contained, Generalized Additive Models: An Introduction with R prepares readers with the practical skills and the theoretical background needed to use and understand GAMs and to move on to other GAM-related methods and models, such as SS-ANOVA, P-splines, backfitting and Bayesian approaches to smoothing and additive modelling.

Principles and Theory for Data Mining and Machine Learning

Download Principles and Theory for Data Mining and Machine Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387981357
Total Pages : 786 pages
Book Rating : 4.3/5 (879 download)

DOWNLOAD NOW!


Book Synopsis Principles and Theory for Data Mining and Machine Learning by : Bertrand Clarke

Download or read book Principles and Theory for Data Mining and Machine Learning written by Bertrand Clarke and published by Springer Science & Business Media. This book was released on 2009-07-21 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extensive treatment of the most up-to-date topics Provides the theory and concepts behind popular and emerging methods Range of topics drawn from Statistics, Computer Science, and Electrical Engineering

Linear Regression Analysis

Download Linear Regression Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118274423
Total Pages : 584 pages
Book Rating : 4.1/5 (182 download)

DOWNLOAD NOW!


Book Synopsis Linear Regression Analysis by : George A. F. Seber

Download or read book Linear Regression Analysis written by George A. F. Seber and published by John Wiley & Sons. This book was released on 2012-01-20 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise, mathematically clear, and comprehensive treatment of the subject. * Expanded coverage of diagnostics and methods of model fitting. * Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models. * More than 200 problems throughout the book plus outline solutions for the exercises. * This revision has been extensively class-tested.

Semiparametric Regression

Download Semiparametric Regression PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521785167
Total Pages : 410 pages
Book Rating : 4.7/5 (851 download)

DOWNLOAD NOW!


Book Synopsis Semiparametric Regression by : David Ruppert

Download or read book Semiparametric Regression written by David Ruppert and published by Cambridge University Press. This book was released on 2003-07-14 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiparametric regression is concerned with the flexible incorporation of non-linear functional relationships in regression analyses. Any application area that benefits from regression analysis can also benefit from semiparametric regression. Assuming only a basic familiarity with ordinary parametric regression, this user-friendly book explains the techniques and benefits of semiparametric regression in a concise and modular fashion. The authors make liberal use of graphics and examples plus case studies taken from environmental, financial, and other applications. They include practical advice on implementation and pointers to relevant software. The 2003 book is suitable as a textbook for students with little background in regression as well as a reference book for statistically oriented scientists such as biostatisticians, econometricians, quantitative social scientists, epidemiologists, with a good working knowledge of regression and the desire to begin using more flexible semiparametric models. Even experts on semiparametric regression should find something new here.

Nonparametric Regression and Generalized Linear Models

Download Nonparametric Regression and Generalized Linear Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482229757
Total Pages : 197 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Regression and Generalized Linear Models by : P.J. Green

Download or read book Nonparametric Regression and Generalized Linear Models written by P.J. Green and published by CRC Press. This book was released on 1993-05-01 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonparametric Regression and Generalized Linear Models focuses on the roughness penalty method of nonparametric smoothing and shows how this technique provides a unifying approach to a wide range of smoothing problems. The emphasis is methodological rather than theoretical, and the authors concentrate on statistical and computation issues. Real data examples are used to illustrate the various methods and to compare them with standard parametric approaches. The mathematical treatment is self-contained and depends mainly on simple linear algebra and calculus. This monograph will be useful both as a reference work for research and applied statisticians and as a text for graduate students.

Mixed Effects Models for Complex Data

Download Mixed Effects Models for Complex Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781420074086
Total Pages : 431 pages
Book Rating : 4.0/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Mixed Effects Models for Complex Data by : Lang Wu

Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.

Smoothing Spline ANOVA Models

Download Smoothing Spline ANOVA Models PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9781489989840
Total Pages : 0 pages
Book Rating : 4.9/5 (898 download)

DOWNLOAD NOW!


Book Synopsis Smoothing Spline ANOVA Models by : Chong Gu

Download or read book Smoothing Spline ANOVA Models written by Chong Gu and published by Springer. This book was released on 2015-06-25 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonparametric function estimation with stochastic data, otherwise known as smoothing, has been studied by several generations of statisticians. Assisted by the ample computing power in today's servers, desktops, and laptops, smoothing methods have been finding their ways into everyday data analysis by practitioners. While scores of methods have proved successful for univariate smoothing, ones practical in multivariate settings number far less. Smoothing spline ANOVA models are a versatile family of smoothing methods derived through roughness penalties, that are suitable for both univariate and multivariate problems. In this book, the author presents a treatise on penalty smoothing under a unified framework. Methods are developed for (i) regression with Gaussian and non-Gaussian responses as well as with censored lifetime data; (ii) density and conditional density estimation under a variety of sampling schemes; and (iii) hazard rate estimation with censored life time data and covariates. The unifying themes are the general penalized likelihood method and the construction of multivariate models with built-in ANOVA decompositions. Extensive discussions are devoted to model construction, smoothing parameter selection, computation, and asymptotic convergence. Most of the computational and data analytical tools discussed in the book are implemented in R, an open-source platform for statistical computing and graphics. Suites of functions are embodied in the R package gss, and are illustrated throughout the book using simulated and real data examples. This monograph will be useful as a reference work for researchers in theoretical and applied statistics as well as for those in other related disciplines. It can also be used as a text for graduate level courses on the subject. Most of the materials are accessible to a second year graduate student with a good training in calculus and linear algebra and working knowledge in basic statistical inferences such as linear models and maximum likelihood estimates.

Practical Statistics for Data Scientists

Download Practical Statistics for Data Scientists PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491952911
Total Pages : 322 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Practical Statistics for Data Scientists by : Peter Bruce

Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Modern Regression Techniques Using R

Download Modern Regression Techniques Using R PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 1446206025
Total Pages : 217 pages
Book Rating : 4.4/5 (462 download)

DOWNLOAD NOW!


Book Synopsis Modern Regression Techniques Using R by : Daniel B Wright

Download or read book Modern Regression Techniques Using R written by Daniel B Wright and published by SAGE. This book was released on 2009-02-19 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistics is the language of modern empirical social and behavioural science and the varieties of regression form the basis of this language. Statistical and computing advances have led to new and exciting regressions that have become the necessary tools for any researcher in these fields. In a way that is refreshingly engaging and readable, Wright and London describe the most useful of these techniques and provide step-by-step instructions, using the freeware R, to analyze datasets that can be located on the books′ webpage: www.sagepub.co.uk/wrightandlondon. Techniques covered in this book include multilevel modeling, ANOVA and ANCOVA, path analysis, mediation and moderation, logistic regression (generalized linear models), generalized additive models, and robust methods. These are all tested out using a range of real research examples conducted by the authors in every chapter. Given the wide coverage of techniques, this book will be essential reading for any advanced undergraduate and graduate student (particularly in psychology) and for more experienced researchers wanting to learn how to apply some of the more recent statistical techniques to their datasets. The Authors are donating all royalties from the book to the American Partnership for Eosinophilic Disorders.

Smoothing Splines

Download Smoothing Splines PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420077562
Total Pages : 380 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Smoothing Splines by : Yuedong Wang

Download or read book Smoothing Splines written by Yuedong Wang and published by CRC Press. This book was released on 2011-06-22 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general class of powerful and flexible modeling techniques, spline smoothing has attracted a great deal of research attention in recent years and has been widely used in many application areas, from medicine to economics. Smoothing Splines: Methods and Applications covers basic smoothing spline models, including polynomial, periodic, spherical, t

Linear Regression Analysis

Download Linear Regression Analysis PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812834109
Total Pages : 349 pages
Book Rating : 4.8/5 (128 download)

DOWNLOAD NOW!


Book Synopsis Linear Regression Analysis by : Xin Yan

Download or read book Linear Regression Analysis written by Xin Yan and published by World Scientific. This book was released on 2009 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the techniques described in the book. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject area." --Book Jacket.

Spline Models for Observational Data

Download Spline Models for Observational Data PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611970128
Total Pages : 181 pages
Book Rating : 4.9/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Spline Models for Observational Data by : Grace Wahba

Download or read book Spline Models for Observational Data written by Grace Wahba and published by SIAM. This book was released on 1990-01-01 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves well as an introduction into the more theoretical aspects of the use of spline models. It develops a theory and practice for the estimation of functions from noisy data on functionals. The simplest example is the estimation of a smooth curve, given noisy observations on a finite number of its values. The estimate is a polynomial smoothing spline. By placing this smoothing problem in the setting of reproducing kernel Hilbert spaces, a theory is developed which includes univariate smoothing splines, thin plate splines in d dimensions, splines on the sphere, additive splines, and interaction splines in a single framework. A straightforward generalization allows the theory to encompass the very important area of (Tikhonov) regularization methods for ill-posed inverse problems. Convergence properties, data based smoothing parameter selection, confidence intervals, and numerical methods are established which are appropriate to a wide variety of problems which fall within this framework. Methods for including side conditions and other prior information in solving ill-posed inverse problems are included. Data which involves samples of random variables with Gaussian, Poisson, binomial, and other distributions are treated in a unified optimization context. Experimental design questions, i.e., which functionals should be observed, are studied in a general context. Extensions to distributed parameter system identification problems are made by considering implicitly defined functionals.