Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Utilization Of Protein Tertiary Contacts To Improve Protein Structure Prediction Using Sequence Homology
Download Utilization Of Protein Tertiary Contacts To Improve Protein Structure Prediction Using Sequence Homology full books in PDF, epub, and Kindle. Read online Utilization Of Protein Tertiary Contacts To Improve Protein Structure Prediction Using Sequence Homology ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Prediction of Protein Secondary Structure by : Yaoqi Zhou
Download or read book Prediction of Protein Secondary Structure written by Yaoqi Zhou and published by Humana. This book was released on 2016-10-28 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thorough volume explores predicting one-dimensional functional properties, functional sites in particular, from protein sequences, an area which is getting more and more attention. Beginning with secondary structure prediction based on sequence only, the book continues by exploring secondary structure prediction based on evolution information, prediction of solvent accessible surface areas and backbone torsion angles, model building, global structural properties, functional properties, as well as visualizing interior and protruding regions in proteins. Written for the highly successful Methods in Molecular Biology series, the chapters include the kind of detail and implementation advice to ensure success in the laboratory. Practical and authoritative, Prediction of Protein Secondary Structure serves as a vital guide to numerous state-of-the-art techniques that are useful for computational and experimental biologists.
Book Synopsis Computational Protein Design by : Ilan Samish
Download or read book Computational Protein Design written by Ilan Samish and published by Humana. This book was released on 2016-12-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim this volume is to present the methods, challenges, software, and applications of this widespread and yet still evolving and maturing field. Computational Protein Design, the first book with this title, guides readers through computational protein design approaches, software and tailored solutions to specific case-study targets. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Protein Design aims to ensure successful results in the further study of this vital field.
Book Synopsis Protein Structure Prediction by : Mohammed Zaki
Download or read book Protein Structure Prediction written by Mohammed Zaki and published by Springer Science & Business Media. This book was released on 2007-09-12 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers elements of both the data-driven comparative modeling approach to structure prediction and also recent attempts to simulate folding using explicit or simplified models. Despite the unsolved mystery of how a protein folds, advances are being made in predicting the interactions of proteins with other molecules. Also rapidly advancing are the methods for solving the inverse folding problem, the problem of finding a sequence to fit a structure. This book focuses on the various computational methods for prediction, their successes and their limitations, from the perspective of their most well known practitioners.
Book Synopsis Homology Molecular Modeling by : Rafael Trindade Maia
Download or read book Homology Molecular Modeling written by Rafael Trindade Maia and published by BoD – Books on Demand. This book was released on 2021-03-10 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homology modeling is an extremely useful and versatile technique that is gaining more and more space and demand in research in computational and theoretical biology. This book, “Homology Molecular Modeling - Perspectives and Applications”, brings together unpublished chapters on this technique. In this book, 7 chapters are intimately related to the theme of molecular modeling, carefully selected and edited for academic and scientific readers. It is an indispensable read for anyone interested in the areas of bioinformatics and computational biology. Divided into 4 sections, the reader will have a didactic and comprehensive view of the theme, with updated and relevant concepts on the subject. This book was organized from researchers to researchers with the aim of spreading the fascinating area of molecular modeling by homology.
Book Synopsis Machine Learning Meets Quantum Physics by : Kristof T. Schütt
Download or read book Machine Learning Meets Quantum Physics written by Kristof T. Schütt and published by Springer Nature. This book was released on 2020-06-03 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.
Book Synopsis Protein Actions: Principles and Modeling by : Ivet Bahar
Download or read book Protein Actions: Principles and Modeling written by Ivet Bahar and published by Garland Science. This book was released on 2017-02-14 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Protein Actions: Principles and Modeling is aimed at graduates, advanced undergraduates, and any professional who seeks an introduction to the biological, chemical, and physical properties of proteins. Broadly accessible to biophysicists and biochemists, it will be particularly useful to student and professional structural biologists and molecular biophysicists, bioinformaticians and computational biologists, biological chemists (particularly drug designers) and molecular bioengineers. The book begins by introducing the basic principles of protein structure and function. Some readers will be familiar with aspects of this, but the authors build up a more quantitative approach than their competitors. Emphasizing concepts and theory rather than experimental techniques, the book shows how proteins can be analyzed using the disciplines of elementary statistical mechanics, energetics, and kinetics. These chapters illuminate how proteins attain biologically active states and the properties of those states. The book ends with a synopsis the roles of computational biology and bioinformatics in protein science.
Book Synopsis Statistical Mechanics, Protein Structure, and Protein Substrate Interactions by : Sebastian Doniach
Download or read book Statistical Mechanics, Protein Structure, and Protein Substrate Interactions written by Sebastian Doniach and published by Springer Science & Business Media. This book was released on 2013-11-22 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: A number of factors have come together in the last couple of decades to define the emerging interdisciplinary field of structural molecular biology. First, there has been the considerable growth in our ability to obtain atomic-resolution structural data for biological molecules in general, and proteins in particular. This is a result of advances in technique, both in x-ray crystallography, driven by the development of electronic detectors and of synchrotron radiation x-ray sources, and by the development ofNMR techniques which allow for inference of a three-dimensional structure of a protein in solution. Second, there has been the enormous development of techniques in DNA engineering which makes it possible to isolate and clone specific molecules of interest in sufficient quantities to enable structural measurements. In addition, the ability to mutate a given amino acid sequence at will has led to a new branch of biochemistry in which quantitative measurements can be made assessing the influence of a given amino acid on the function of a biological molecule. A third factor, resulting from the exponential increase in computing power available to researchers, has been the emergence of a growing body of people who can take the structural data and use it to build atomic-scale models of biomolecules in order to try and simulate their motions in an aqueous environment, thus helping to provide answers to one of the most basic questions of molecular biology: the relation of structure to function.
Book Synopsis Computational Structural Biology by : Torsten Schwede
Download or read book Computational Structural Biology written by Torsten Schwede and published by World Scientific. This book was released on 2008 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a comprehensive introduction to Landau-Lifshitz equations and Landau-Lifshitz-Maxwell equations, beginning with the work by Yulin Zhou and Boling Guo in the early 1980s and including most of the work done by this Chinese group led by Zhou and Guo since. The book focuses on aspects such as the existence of weak solutions in multi dimensions, existence and uniqueness of smooth solutions in one dimension, relations with harmonic map heat flows, partial regularity and long time behaviors. The book is a valuable reference book for those who are interested in partial differential equations, geometric analysis and mathematical physics. It may also be used as an advanced textbook by graduate students in these fields.
Book Synopsis Prediction of Protein Structure and the Principles of Protein Conformation by : G.D. Fasman
Download or read book Prediction of Protein Structure and the Principles of Protein Conformation written by G.D. Fasman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 796 pages. Available in PDF, EPUB and Kindle. Book excerpt: The prediction of the conformation of proteins has developed from an intellectual exercise into a serious practical endeavor that has great promise to yield new stable enzymes, products of pharmacological significance, and catalysts of great potential. With the application of predic tion gaining momentum in various fields, such as enzymology and immunology, it was deemed time that a volume be published to make available a thorough evaluation of present methods, for researchers in this field to expound fully the virtues of various algorithms, to open the field to a wider audience, and to offer the scientific public an opportunity to examine carefully its successes and failures. In this manner the practitioners of the art could better evaluate the tools and the output so that their expectations and applications could be more realistic. The editor has assembled chapters by many of the main contributors to this area and simultaneously placed their programs at three national resources so that they are readily available to those who wish to apply them to their personal interests. These algorithms, written by their originators, when utilized on pes or larger computers, can instantaneously take a primary amino acid sequence and produce a two-or three-dimensional artistic image that gives satisfaction to one's esthetic sensibilities and food for thought concerning the structure and function of proteins. It is in this spirit that this volume was envisaged.
Book Synopsis Introduction to Protein Structure Prediction by : Huzefa Rangwala
Download or read book Introduction to Protein Structure Prediction written by Huzefa Rangwala and published by John Wiley & Sons. This book was released on 2011-03-16 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: A look at the methods and algorithms used to predict protein structure A thorough knowledge of the function and structure of proteins is critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this reference sheds light on the methods used for protein structure prediction and reveals the key applications of modeled structures. This indispensable book covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, readers will find an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction and they will acquire unique insight into the future applications of the modeled protein structures. The book begins with a thorough introduction to the protein structure prediction problem and is divided into four themes: a background on structure prediction, the prediction of structural elements, tertiary structure prediction, and functional insights. Within those four sections, the following topics are covered: Databases and resources that are commonly used for protein structure prediction The structure prediction flagship assessment (CASP) and the protein structure initiative (PSI) Definitions of recurring substructures and the computational approaches used for solving sequence problems Difficulties with contact map prediction and how sophisticated machine learning methods can solve those problems Structure prediction methods that rely on homology modeling, threading, and fragment assembly Hybrid methods that achieve high-resolution protein structures Parts of the protein structure that may be conserved and used to interact with other biomolecules How the loop prediction problem can be used for refinement of the modeled structures The computational model that detects the differences between protein structure and its modeled mutant Whether working in the field of bioinformatics or molecular biology research or taking courses in protein modeling, readers will find the content in this book invaluable.
Book Synopsis From Protein Structure to Function with Bioinformatics by : Daniel John Rigden
Download or read book From Protein Structure to Function with Bioinformatics written by Daniel John Rigden and published by Springer Science & Business Media. This book was released on 2008-12-11 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proteins lie at the heart of almost all biological processes and have an incredibly wide range of activities. Central to the function of all proteins is their ability to adopt, stably or sometimes transiently, structures that allow for interaction with other molecules. An understanding of the structure of a protein can therefore lead us to a much improved picture of its molecular function. This realisation has been a prime motivation of recent Structural Genomics projects, involving large-scale experimental determination of protein structures, often those of proteins about which little is known of function. These initiatives have, in turn, stimulated the massive development of novel methods for prediction of protein function from structure. Since model structures may also take advantage of new function prediction algorithms, the first part of the book deals with the various ways in which protein structures may be predicted or inferred, including specific treatment of membrane and intrinsically disordered proteins. A detailed consideration of current structure-based function prediction methodologies forms the second part of this book, which concludes with two chapters, focusing specifically on case studies, designed to illustrate the real-world application of these methods. With bang up-to-date texts from world experts, and abundant links to publicly available resources, this book will be invaluable to anyone who studies proteins and the endlessly fascinating relationship between their structure and function.
Book Synopsis The Protein Folding Problem and Tertiary Structure Prediction by : Kenneth M.Jr. Merz
Download or read book The Protein Folding Problem and Tertiary Structure Prediction written by Kenneth M.Jr. Merz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: A solution to the protein folding problem has eluded researchers for more than 30 years. The stakes are high. Such a solution will make 40,000 more tertiary structures available for immediate study by translating the DNA sequence information in the sequence databases into three-dimensional protein structures. This translation will be indispensable for the analy sis of results from the Human Genome Project, de novo protein design, and many other areas of biotechnological research. Finally, an in-depth study of the rules of protein folding should provide vital clues to the protein fold ing process. The search for these rules is therefore an important objective for theoretical molecular biology. Both experimental and theoretical ap proaches have been used in the search for a solution, with many promising results but no general solution. In recent years, there has been an exponen tial increase in the power of computers. This has triggered an incredible outburst of theoretical approaches to solving the protein folding problem ranging from molecular dynamics-based studies of proteins in solution to the actual prediction of protein structures from first principles. This volume attempts to present a concise overview of these advances. Adrian Roitberg and Ron Elber describe the locally enhanced sam pling/simulated annealing conformational search algorithm (Chapter 1), which is potentially useful for the rapid conformational search of larger molecular systems.
Book Synopsis Computer Assisted Modeling by : National Research Council
Download or read book Computer Assisted Modeling written by National Research Council and published by National Academies Press. This book was released on 1987-02-01 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: In much of biology, the search for understanding the relation between structure and function is now taking place at the macromolecular level. Proteins, nucleic acids, and polysaccharides are macromolecule--polymers formed from families of simpler subunits. Because of their size and complexity, the polymers are capable of both inter- and intramolecular interactions. These interactions confer upon the polymers distinctive three-dimensional shapes. These tertiary configurations, in turn, determine the function of the macromolecule. Computers have become so inextricably involved in empirical studies of three-dimensional macromolecular structure that mathematical modeling, or theory, and experimental approaches are interrelated aspects of a single enterprise.
Book Synopsis The Phylogenetic Handbook by : Marco Salemi
Download or read book The Phylogenetic Handbook written by Marco Salemi and published by Cambridge University Press. This book was released on 2009-03-26 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: A broad, hands on guide with detailed explanations of current methodology, relevant exercises and popular software tools.
Book Synopsis Structural Bioinformatics by : Jenny Gu
Download or read book Structural Bioinformatics written by Jenny Gu and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 1105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structural Bioinformatics was the first major effort to show the application of the principles and basic knowledge of the larger field of bioinformatics to questions focusing on macromolecular structure, such as the prediction of protein structure and how proteins carry out cellular functions, and how the application of bioinformatics to these life science issues can improve healthcare by accelerating drug discovery and development. Designed primarily as a reference, the first edition nevertheless saw widespread use as a textbook in graduate and undergraduate university courses dealing with the theories and associated algorithms, resources, and tools used in the analysis, prediction, and theoretical underpinnings of DNA, RNA, and proteins. This new edition contains not only thorough updates of the advances in structural bioinformatics since publication of the first edition, but also features eleven new chapters dealing with frontier areas of high scientific impact, including: sampling and search techniques; use of mass spectrometry; genome functional annotation; and much more. Offering detailed coverage for practitioners while remaining accessible to the novice, Structural Bioinformatics, Second Edition is a valuable resource and an excellent textbook for a range of readers in the bioinformatics and advanced biology fields. Praise for the previous edition: "This book is a gold mine of fundamental and practical information in an area not previously well represented in book form." —Biochemistry and Molecular Education "... destined to become a classic reference work for workers at all levels in structural bioinformatics...recommended with great enthusiasm for educators, researchers, and graduate students." —BAMBED "...a useful and timely summary of a rapidly expanding field." —Nature Structural Biology "...a terrific job in this timely creation of a compilation of articles that appropriately addresses this issue." —Briefings in Bioinformatics
Book Synopsis RNA 3D Structure Analysis and Prediction by : Neocles Leontis
Download or read book RNA 3D Structure Analysis and Prediction written by Neocles Leontis and published by Springer Science & Business Media. This book was released on 2012-06-05 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the dramatic increase in RNA 3D structure determination in recent years, we now know that RNA molecules are highly structured. Moreover, knowledge of RNA 3D structures has proven crucial for understanding in atomic detail how they carry out their biological functions. Because of the huge number of potentially important RNA molecules in biology, many more than can be studied experimentally, we need theoretical approaches for predicting 3D structures on the basis of sequences alone. This volume provides a comprehensive overview of current progress in the field by leading practitioners employing a variety of methods to model RNA 3D structures by homology, by fragment assembly, and by de novo energy and knowledge-based approaches.
Book Synopsis Computational Methods for Protein Folding, Volume 120 by : Richard A. Friesner
Download or read book Computational Methods for Protein Folding, Volume 120 written by Richard A. Friesner and published by John Wiley & Sons. This book was released on 2004-04-07 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first attempts to model proteins on a computer began almost thirty years ago, our understanding of protein structure and dynamics has dramatically increased. Spectroscopic measurement techniques continue to improve in resolution and sensitivity, allowing a wealth of information to be obtained with regard to the kinetics of protein folding and unfolding, and complementing the detailed structural picture of the folded state. Concurrently, algorithms, software, and computational hardware have progressed to the point where both structural and kinetic problems may be studied with a fair degree of realism. Despite these advances, many major challenges remain in understanding protein folding at both the conceptual and practical levels. Computational Methods for Protein Folding seeks to illuminate recent advances in computational modeling of protein folding in a way that will be useful to physicists, chemists, and chemical physicists. Covering a broad spectrum of computational methods and practices culled from a variety of research fields, the editors present a full range of models that, together, provide a thorough and current description of all aspects of protein folding. A valuable resource for both students and professionals in the field, the book will be of value both as a cutting-edge overview of existing information and as a catalyst for inspiring new studies. Computational Methods for Protein Folding is the 120th volume in the acclaimed series Advances in Chemical Physics, a compilation of scholarly works dedicated to the dissemination of contemporary advances in chemical physics, edited by Nobel Prize-winner Ilya Prigogine.