Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Using Python For Introductory Econometrics
Download Using Python For Introductory Econometrics full books in PDF, epub, and Kindle. Read online Using Python For Introductory Econometrics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Using Python for Introductory Econometrics by : Florian Heiss
Download or read book Using Python for Introductory Econometrics written by Florian Heiss and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introductory Econometrics for Finance by : Chris Brooks
Download or read book Introductory Econometrics for Finance written by Chris Brooks and published by Cambridge University Press. This book was released on 2008-05-22 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: This best-selling textbook addresses the need for an introduction to econometrics specifically written for finance students. Key features: • Thoroughly revised and updated, including two new chapters on panel data and limited dependent variable models • Problem-solving approach assumes no prior knowledge of econometrics emphasising intuition rather than formulae, giving students the skills and confidence to estimate and interpret models • Detailed examples and case studies from finance show students how techniques are applied in real research • Sample instructions and output from the popular computer package EViews enable students to implement models themselves and understand how to interpret results • Gives advice on planning and executing a project in empirical finance, preparing students for using econometrics in practice • Covers important modern topics such as time-series forecasting, volatility modelling, switching models and simulation methods • Thoroughly class-tested in leading finance schools. Bundle with EViews student version 6 available. Please contact us for more details.
Book Synopsis Using R for Introductory Econometrics by : Florian Heiss
Download or read book Using R for Introductory Econometrics written by Florian Heiss and published by . This book was released on 2020-05-24 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the popular, powerful and free programming language and software package R Focus implementation of standard tools and methods used in econometrics Compatible with "Introductory Econometrics" by Jeffrey M. Wooldridge in terms of topics, organization, terminology and notation Companion website with full text, all code for download and other goodies: http: //urfie.net Also check out Using Python for Introductory Econometrics http: //upfie.net/ Praise "A very nice resource for those wanting to use R in their introductory econometrics courses." (Jeffrey M. Wooldridge) Using R for Introductory Econometrics is a fabulous modern resource. I know I'm going to be using it with my students, and I recommend it to anyone who wants to learn about econometrics and R at the same time." (David E. Giles in his blog "Econometrics Beat") Topics: A gentle introduction to R Simple and multiple regression in matrix form and using black box routines Inference in small samples and asymptotics Monte Carlo simulations Heteroscedasticity Time series regression Pooled cross-sections and panel data Instrumental variables and two-stage least squares Simultaneous equation models Limited dependent variables: binary, count data, censoring, truncation, and sample selection Formatted reports and research papers combining R with R Markdown or LaTeX
Book Synopsis Introductory Econometrics: A Modern Approach by : Jeffrey M. Wooldridge
Download or read book Introductory Econometrics: A Modern Approach written by Jeffrey M. Wooldridge and published by Cengage Learning. This book was released on 2019-01-04 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain an understanding of how econometrics can answer today's questions in business, policy evaluation and forecasting with Wooldridge's INTRODUCTORY ECONOMETRICS: A MODERN APPROACH, 7E. This edition's practical, yet professional, approach demonstrates how econometrics has moved beyond a set of abstract tools to become genuinely useful for answering questions across a variety of disciplines. Information is organized around the type of data being analyzed, using a systematic approach that only introduces assumptions as they are needed. This makes the material easier to understand and, ultimately, leads to better econometric practices. Packed with relevant applications, this edition incorporates more than 100 intriguing data sets in different formats. Updates introduce the latest developments in the field, including recent advances in the so-called “causal effects” or “treatment effects” literature, for an understanding of the impact and importance of econometrics today. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Book Synopsis An Introduction to Modern Econometrics Using Stata by : Christopher F. Baum
Download or read book An Introduction to Modern Econometrics Using Stata written by Christopher F. Baum and published by Stata Press. This book was released on 2006-08-17 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrating a contemporary approach to econometrics with the powerful computational tools offered by Stata, this introduction illustrates how to apply econometric theories used in modern empirical research using Stata. The author emphasizes the role of method-of-moments estimators, hypothesis testing, and specification analysis and provides practical examples that show how to apply the theories to real data sets. The book first builds familiarity with the basic skills needed to work with econometric data in Stata before delving into the core topics, which range from the multiple linear regression model to instrumental-variables estimation.
Book Synopsis Applied Econometrics with R by : Christian Kleiber
Download or read book Applied Econometrics with R written by Christian Kleiber and published by Springer Science & Business Media. This book was released on 2008-12-10 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Book Synopsis A Guide to Econometrics by : Peter Kennedy
Download or read book A Guide to Econometrics written by Peter Kennedy and published by John Wiley & Sons. This book was released on 2008-02-19 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dieses etwas andere Lehrbuch bietet keine vorgefertigten Rezepte und Problemlösungen, sondern eine kritische Diskussion ökonometrischer Modelle und Methoden: voller überraschender Fragen, skeptisch, humorvoll und anwendungsorientiert. Sein Erfolg gibt ihm Recht.
Book Synopsis Python for Data Analysis by : Wes McKinney
Download or read book Python for Data Analysis written by Wes McKinney and published by "O'Reilly Media, Inc.". This book was released on 2017-09-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Book Synopsis An Introduction to Statistical Learning by : Gareth James
Download or read book An Introduction to Statistical Learning written by Gareth James and published by Springer Nature. This book was released on 2023-08-01 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Book Synopsis The Effect by : Nick Huntington-Klein
Download or read book The Effect written by Nick Huntington-Klein and published by CRC Press. This book was released on 2021-12-20 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extensive code examples in R, Stata, and Python Chapters on overlooked topics in econometrics classes: heterogeneous treatment effects, simulation and power analysis, new cutting-edge methods, and uncomfortable ignored assumptions An easy-to-read conversational tone Up-to-date coverage of methods with fast-moving literatures like difference-in-differences
Book Synopsis Econometrics For Dummies by : Roberto Pedace
Download or read book Econometrics For Dummies written by Roberto Pedace and published by John Wiley & Sons. This book was released on 2013-06-05 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Score your highest in econometrics? Easy. Econometrics can prove challenging for many students unfamiliar with the terms and concepts discussed in a typical econometrics course. Econometrics For Dummies eliminates that confusion with easy-to-understand explanations of important topics in the study of economics. Econometrics For Dummies breaks down this complex subject and provides you with an easy-to-follow course supplement to further refine your understanding of how econometrics works and how it can be applied in real-world situations. An excellent resource for anyone participating in a college or graduate level econometrics course Provides you with an easy-to-follow introduction to the techniques and applications of econometrics Helps you score high on exam day If you're seeking a degree in economics and looking for a plain-English guide to this often-intimidating course, Econometrics For Dummies has you covered.
Book Synopsis Forecasting: principles and practice by : Rob J Hyndman
Download or read book Forecasting: principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Book Synopsis Learning Microeconometrics with R by : Christopher P. Adams
Download or read book Learning Microeconometrics with R written by Christopher P. Adams and published by CRC Press. This book was released on 2020-12-29 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on the assumptions underlying the algorithms rather than their statistical properties Presents cutting-edge analysis of factor models and finite mixture models. Uses a hands-on approach to examine the assumptions made by the models and when the models fail to estimate accurately Utilizes interesting real-world data sets that can be used to analyze important microeconomic problems Introduces R programming concepts throughout the book. Includes appendices that discuss many of the concepts introduced in the book, as well as measures of uncertainty in microeconometrics.
Book Synopsis Python Data Science Handbook by : Jake VanderPlas
Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Book Synopsis Machine Learning for Time Series Forecasting with Python by : Francesca Lazzeri
Download or read book Machine Learning for Time Series Forecasting with Python written by Francesca Lazzeri and published by John Wiley & Sons. This book was released on 2020-12-03 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models’ performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling.
Book Synopsis Practical Econometrics by : Michael Hilmer
Download or read book Practical Econometrics written by Michael Hilmer and published by McGraw-Hill Education. This book was released on 2013-10-08 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Econometrics bridges the gap between theoretical and practical knowledge of introductory econometrics. The intuition underlying each individual econometric tool is explained, both verbally and visually whenever possible, before introducing the technical details required to actually implement the tool. Particular attention is paid to developing correct interpretation skills and the how-to's associated with effectively communicating the quality of one's work. The goal is to provide readers with not only the desire but also the practical know-how to correctly utilize the econometric tools introduced and thereby increase the true power of the introductory econometrics course. Both Microsoft Excel and Stata software packages provide data examples throughout the text.
Book Synopsis Python for Marketing Research and Analytics by : Jason S. Schwarz
Download or read book Python for Marketing Research and Analytics written by Jason S. Schwarz and published by Springer Nature. This book was released on 2020-11-03 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.