Unsupervised Learning Algorithms

Download Unsupervised Learning Algorithms PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319242113
Total Pages : 564 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Unsupervised Learning Algorithms by : M. Emre Celebi

Download or read book Unsupervised Learning Algorithms written by M. Emre Celebi and published by Springer. This book was released on 2016-04-29 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering, feature extraction, and applications of unsupervised learning. Each chapter is contributed by a leading expert in the field.

Unsupervised Learning

Download Unsupervised Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262581684
Total Pages : 420 pages
Book Rating : 4.5/5 (816 download)

DOWNLOAD NOW!


Book Synopsis Unsupervised Learning by : Geoffrey Hinton

Download or read book Unsupervised Learning written by Geoffrey Hinton and published by MIT Press. This book was released on 1999-05-24 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past nine years. This volume of Foundations of Neural Computation, on unsupervised learning algorithms, focuses on neural network learning algorithms that do not require an explicit teacher. The goal of unsupervised learning is to extract an efficient internal representation of the statistical structure implicit in the inputs. These algorithms provide insights into the development of the cerebral cortex and implicit learning in humans. They are also of interest to engineers working in areas such as computer vision and speech recognition who seek efficient representations of raw input data.

Hands-On Unsupervised Learning Using Python

Download Hands-On Unsupervised Learning Using Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492035599
Total Pages : 310 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Unsupervised Learning Using Python by : Ankur A. Patel

Download or read book Hands-On Unsupervised Learning Using Python written by Ankur A. Patel and published by "O'Reilly Media, Inc.". This book was released on 2019-02-21 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the other hand, can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras. With code and hands-on examples, data scientists will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started. Compare the strengths and weaknesses of the different machine learning approaches: supervised, unsupervised, and reinforcement learning Set up and manage machine learning projects end-to-end Build an anomaly detection system to catch credit card fraud Clusters users into distinct and homogeneous groups Perform semisupervised learning Develop movie recommender systems using restricted Boltzmann machines Generate synthetic images using generative adversarial networks

Advanced Lectures on Machine Learning

Download Advanced Lectures on Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540286500
Total Pages : 249 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Advanced Lectures on Machine Learning by : Olivier Bousquet

Download or read book Advanced Lectures on Machine Learning written by Olivier Bousquet and published by Springer. This book was released on 2011-03-22 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.

Machine Learning Algorithms

Download Machine Learning Algorithms PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785884514
Total Pages : 352 pages
Book Rating : 4.7/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Algorithms by : Giuseppe Bonaccorso

Download or read book Machine Learning Algorithms written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2017-07-24 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem. Style and approach An easy-to-follow, step-by-step guide that will help you get to grips with real -world applications of Algorithms for Machine Learning.

Machine Learning Foundations

Download Machine Learning Foundations PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030659003
Total Pages : 391 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Foundations by : Taeho Jo

Download or read book Machine Learning Foundations written by Taeho Jo and published by Springer Nature. This book was released on 2021-02-12 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides conceptual understanding of machine learning algorithms though supervised, unsupervised, and advanced learning techniques. The book consists of four parts: foundation, supervised learning, unsupervised learning, and advanced learning. The first part provides the fundamental materials, background, and simple machine learning algorithms, as the preparation for studying machine learning algorithms. The second and the third parts provide understanding of the supervised learning algorithms and the unsupervised learning algorithms as the core parts. The last part provides advanced machine learning algorithms: ensemble learning, semi-supervised learning, temporal learning, and reinforced learning. Provides comprehensive coverage of both learning algorithms: supervised and unsupervised learning; Outlines the computation paradigm for solving classification, regression, and clustering; Features essential techniques for building the a new generation of machine learning.

Pro Machine Learning Algorithms

Download Pro Machine Learning Algorithms PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484235649
Total Pages : 379 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Pro Machine Learning Algorithms by : V Kishore Ayyadevara

Download or read book Pro Machine Learning Algorithms written by V Kishore Ayyadevara and published by Apress. This book was released on 2018-06-30 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R. You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers. You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. What You Will Learn Get an in-depth understanding of all the major machine learning and deep learning algorithms Fully appreciate the pitfalls to avoid while building models Implement machine learning algorithms in the cloud Follow a hands-on approach through case studies for each algorithm Gain the tricks of ensemble learning to build more accurate models Discover the basics of programming in R/Python and the Keras framework for deep learning Who This Book Is For Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.

Supervised and Unsupervised Learning for Data Science

Download Supervised and Unsupervised Learning for Data Science PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030224759
Total Pages : 191 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Supervised and Unsupervised Learning for Data Science by : Michael W. Berry

Download or read book Supervised and Unsupervised Learning for Data Science written by Michael W. Berry and published by Springer Nature. This book was released on 2019-09-04 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the state of the art in learning algorithms with an inclusion of semi-supervised methods to provide a broad scope of clustering and classification solutions for big data applications. Case studies and best practices are included along with theoretical models of learning for a comprehensive reference to the field. The book is organized into eight chapters that cover the following topics: discretization, feature extraction and selection, classification, clustering, topic modeling, graph analysis and applications. Practitioners and graduate students can use the volume as an important reference for their current and future research and faculty will find the volume useful for assignments in presenting current approaches to unsupervised and semi-supervised learning in graduate-level seminar courses. The book is based on selected, expanded papers from the Fourth International Conference on Soft Computing in Data Science (2018). Includes new advances in clustering and classification using semi-supervised and unsupervised learning; Address new challenges arising in feature extraction and selection using semi-supervised and unsupervised learning; Features applications from healthcare, engineering, and text/social media mining that exploit techniques from semi-supervised and unsupervised learning.

Machine Learning For Dummies

Download Machine Learning For Dummies PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119724015
Total Pages : 471 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning For Dummies by : John Paul Mueller

Download or read book Machine Learning For Dummies written by John Paul Mueller and published by John Wiley & Sons. This book was released on 2021-02-09 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of Mark Cuban’s top reads for better understanding A.I. (inc.com, 2021) Your comprehensive entry-level guide to machine learning While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex Machina—it is a form of artificial intelligence and one of the most exciting technological means of identifying opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine learning is mastering a big part of our tech future and opening up incredible new directions in careers that include fraud detection, optimizing search results, serving real-time ads, credit-scoring, building accurate and sophisticated pricing models—and way, way more. Unlike most machine learning books, the fully updated 2nd Edition of Machine Learning For Dummies doesn't assume you have years of experience using programming languages such as Python (R source is also included in a downloadable form with comments and explanations), but lets you in on the ground floor, covering the entry-level materials that will get you up and running building models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles that power machine learning but also shows that you don't need to be a math whiz to build fun new tools and apply them to your work and study. Understand the history of AI and machine learning Work with Python 3.8 and TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the worn out data found in other books Apply machine learning to real problems Whether you want to learn for college or to enhance your business or career performance, this friendly beginner's guide is your best introduction to machine learning, allowing you to become quickly confident using this amazing and fast-developing technology that's impacting lives for the better all over the world.

Machine Learning Techniques for Multimedia

Download Machine Learning Techniques for Multimedia PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540751718
Total Pages : 297 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Techniques for Multimedia by : Matthieu Cord

Download or read book Machine Learning Techniques for Multimedia written by Matthieu Cord and published by Springer Science & Business Media. This book was released on 2008-02-07 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it. Arising from the EU MUSCLE network, this multidisciplinary book provides a comprehensive coverage of the most important machine learning techniques used and their application in this domain.

Unsupervised Learning in Space and Time

Download Unsupervised Learning in Space and Time PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030421287
Total Pages : 315 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Unsupervised Learning in Space and Time by : Marius Leordeanu

Download or read book Unsupervised Learning in Space and Time written by Marius Leordeanu and published by Springer Nature. This book was released on 2020-04-17 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses one of the most important unsolved problems in artificial intelligence: the task of learning, in an unsupervised manner, from massive quantities of spatiotemporal visual data that are available at low cost. The book covers important scientific discoveries and findings, with a focus on the latest advances in the field. Presenting a coherent structure, the book logically connects novel mathematical formulations and efficient computational solutions for a range of unsupervised learning tasks, including visual feature matching, learning and classification, object discovery, and semantic segmentation in video. The final part of the book proposes a general strategy for visual learning over several generations of student-teacher neural networks, along with a unique view on the future of unsupervised learning in real-world contexts. Offering a fresh approach to this difficult problem, several efficient, state-of-the-art unsupervised learning algorithms are reviewed in detail, complete with an analysis of their performance on various tasks, datasets, and experimental setups. By highlighting the interconnections between these methods, many seemingly diverse problems are elegantly brought together in a unified way. Serving as an invaluable guide to the computational tools and algorithms required to tackle the exciting challenges in the field, this book is a must-read for graduate students seeking a greater understanding of unsupervised learning, as well as researchers in computer vision, machine learning, robotics, and related disciplines.

The Unsupervised Learning Workshop

Download The Unsupervised Learning Workshop PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800206240
Total Pages : 549 pages
Book Rating : 4.8/5 (2 download)

DOWNLOAD NOW!


Book Synopsis The Unsupervised Learning Workshop by : Aaron Jones

Download or read book The Unsupervised Learning Workshop written by Aaron Jones and published by Packt Publishing Ltd. This book was released on 2020-07-29 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learning how to apply unsupervised algorithms on unlabeled datasets from scratch can be easier than you thought with this beginner's workshop, featuring interesting examples and activities Key FeaturesGet familiar with the ecosystem of unsupervised algorithmsLearn interesting methods to simplify large amounts of unorganized dataTackle real-world challenges, such as estimating the population density of a geographical areaBook Description Do you find it difficult to understand how popular companies like WhatsApp and Amazon find valuable insights from large amounts of unorganized data? The Unsupervised Learning Workshop will give you the confidence to deal with cluttered and unlabeled datasets, using unsupervised algorithms in an easy and interactive manner. The book starts by introducing the most popular clustering algorithms of unsupervised learning. You'll find out how hierarchical clustering differs from k-means, along with understanding how to apply DBSCAN to highly complex and noisy data. Moving ahead, you'll use autoencoders for efficient data encoding. As you progress, you'll use t-SNE models to extract high-dimensional information into a lower dimension for better visualization, in addition to working with topic modeling for implementing natural language processing (NLP). In later chapters, you'll find key relationships between customers and businesses using Market Basket Analysis, before going on to use Hotspot Analysis for estimating the population density of an area. By the end of this book, you'll be equipped with the skills you need to apply unsupervised algorithms on cluttered datasets to find useful patterns and insights. What you will learnDistinguish between hierarchical clustering and the k-means algorithmUnderstand the process of finding clusters in dataGrasp interesting techniques to reduce the size of dataUse autoencoders to decode dataExtract text from a large collection of documents using topic modelingCreate a bag-of-words model using the CountVectorizerWho this book is for If you are a data scientist who is just getting started and want to learn how to implement machine learning algorithms to build predictive models, then this book is for you. To expedite the learning process, a solid understanding of the Python programming language is recommended, as you'll be editing classes and functions instead of creating them from scratch.

Data Analytics in Bioinformatics

Download Data Analytics in Bioinformatics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111978560X
Total Pages : 433 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Data Analytics in Bioinformatics by : Rabinarayan Satpathy

Download or read book Data Analytics in Bioinformatics written by Rabinarayan Satpathy and published by John Wiley & Sons. This book was released on 2021-01-20 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.

Mastering Machine Learning Algorithms

Download Mastering Machine Learning Algorithms PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788625900
Total Pages : 567 pages
Book Rating : 4.7/5 (886 download)

DOWNLOAD NOW!


Book Synopsis Mastering Machine Learning Algorithms by : Giuseppe Bonaccorso

Download or read book Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2018-05-25 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.

Machine Learning and Big Data

Download Machine Learning and Big Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119654742
Total Pages : 544 pages
Book Rating : 4.1/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Big Data by : Uma N. Dulhare

Download or read book Machine Learning and Big Data written by Uma N. Dulhare and published by John Wiley & Sons. This book was released on 2020-09-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including those that are solving technology requirements, evaluation of methodology advances and algorithm demonstrations. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the academic and professional community. The 17 chapters are divided into 5 sections: Theoretical Fundamentals; Big Data and Pattern Recognition; Machine Learning: Algorithms & Applications; Machine Learning's Next Frontier and Hands-On and Case Study. While it dwells on the foundations of machine learning and big data as a part of analytics, it also focuses on contemporary topics for research and development. In this regard, the book covers machine learning algorithms and their modern applications in developing automated systems. Subjects covered in detail include: Mathematical foundations of machine learning with various examples. An empirical study of supervised learning algorithms like Naïve Bayes, KNN and semi-supervised learning algorithms viz. S3VM, Graph-Based, Multiview. Precise study on unsupervised learning algorithms like GMM, K-mean clustering, Dritchlet process mixture model, X-means and Reinforcement learning algorithm with Q learning, R learning, TD learning, SARSA Learning, and so forth. Hands-on machine leaning open source tools viz. Apache Mahout, H2O. Case studies for readers to analyze the prescribed cases and present their solutions or interpretations with intrusion detection in MANETS using machine learning. Showcase on novel user-cases: Implications of Electronic Governance as well as Pragmatic Study of BD/ML technologies for agriculture, healthcare, social media, industry, banking, insurance and so on.

Machine Learning

Download Machine Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420067192
Total Pages : 407 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning by : Stephen Marsland

Download or read book Machine Learning written by Stephen Marsland and published by CRC Press. This book was released on 2011-03-23 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditional books on machine learning can be divided into two groups- those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but

Handbook of Research on Applications and Implementations of Machine Learning Techniques

Download Handbook of Research on Applications and Implementations of Machine Learning Techniques PDF Online Free

Author :
Publisher : IGI Global, Engineering Science Reference
ISBN 13 : 9781522599029
Total Pages : 0 pages
Book Rating : 4.5/5 (99 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Research on Applications and Implementations of Machine Learning Techniques by : Sathiyamoorthi Velayutham

Download or read book Handbook of Research on Applications and Implementations of Machine Learning Techniques written by Sathiyamoorthi Velayutham and published by IGI Global, Engineering Science Reference. This book was released on 2019-07 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book examines the practical applications and implementation of various machine learning techniques in various fields such as agriculture, medical, image processing, and networking"--