Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Uniqueness And Singularities Of Weak Solutions To Some Nonlinear Wave Equations
Download Uniqueness And Singularities Of Weak Solutions To Some Nonlinear Wave Equations full books in PDF, epub, and Kindle. Read online Uniqueness And Singularities Of Weak Solutions To Some Nonlinear Wave Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Nonlinear Dispersive Equations by : Jaime Angulo Pava
Download or read book Nonlinear Dispersive Equations written by Jaime Angulo Pava and published by American Mathematical Soc.. This book was released on 2009 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained presentation of classical and new methods for studying wave phenomena that are related to the existence and stability of solitary and periodic travelling wave solutions for nonlinear dispersive evolution equations. Simplicity, concrete examples, and applications are emphasized throughout in order to make the material easily accessible. The list of classical nonlinear dispersive equations studied include Korteweg-de Vries, Benjamin-Ono, and Schrodinger equations. Many special Jacobian elliptic functions play a role in these examples. The author brings the reader to the forefront of knowledge about some aspects of the theory and motivates future developments in this fascinating and rapidly growing field. The book can be used as an instructive study guide as well as a reference by students and mature scientists interested in nonlinear wave phenomena.
Book Synopsis Proceedings of the Eighth International Colloquium on Differential Equations, Plovdiv, Bulgaria, 18–23 August, 1997 by : D. Bainov
Download or read book Proceedings of the Eighth International Colloquium on Differential Equations, Plovdiv, Bulgaria, 18–23 August, 1997 written by D. Bainov and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-05-18 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: No detailed description available for "Proceedings of the Eighth International Colloquium on Differential Equations, Plovdiv, Bulgaria, 18-23 August, 1997".
Book Synopsis Handbook of Differential Equations: Evolutionary Equations by : C.M. Dafermos
Download or read book Handbook of Differential Equations: Evolutionary Equations written by C.M. Dafermos and published by Elsevier. This book was released on 2005-10-05 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this Handbook is to acquaint the reader with the current status of the theory of evolutionary partial differential equations, and with some of its applications. Evolutionary partial differential equations made their first appearance in the 18th century, in the endeavor to understand the motion of fluids and other continuous media. The active research effort over the span of two centuries, combined with the wide variety of physical phenomena that had to be explained, has resulted in an enormous body of literature. Any attempt to produce a comprehensive survey would be futile. The aim here is to collect review articles, written by leading experts, which will highlight the present and expected future directions of development of the field. The emphasis will be on nonlinear equations, which pose the most challenging problems today.. Volume I of this Handbook does focus on the abstract theory of evolutionary equations. . Volume 2 considers more concrete problems relating to specific applications. . Together they provide a panorama of this amazingly complex and rapidly developing branch of mathematics.
Book Synopsis Geometric Wave Equations by : Jalal M. Ihsan Shatah
Download or read book Geometric Wave Equations written by Jalal M. Ihsan Shatah and published by American Mathematical Soc.. This book was released on 2000 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains notes of the lectures given at the Courant Institute and a DMV-Seminar at Oberwolfach. The focus is on the recent work of the authors on semilinear wave equations with critical Sobolev exponents and on wave maps in two space dimensions. Background material and references have been added to make the notes self-contained. The book is suitable for use in a graduate-level course on the topic. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
Book Synopsis Global Classical Solutions for Nonlinear Evolution Equations by : Ta-Tsien Li
Download or read book Global Classical Solutions for Nonlinear Evolution Equations written by Ta-Tsien Li and published by Chapman & Hall/CRC. This book was released on 1992 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text represents the results originally obtained by S. Lainerman, D. Christodoulou, Y. Choquet-Bruhat, T. Nishida and A. Matsumara on the global existence of classical solutions to the Cauchy problem with small initial data for nonlinear evolution equations.
Book Synopsis Evolution PDEs with Nonstandard Growth Conditions by : Stanislav Antontsev
Download or read book Evolution PDEs with Nonstandard Growth Conditions written by Stanislav Antontsev and published by Springer. This book was released on 2015-04-01 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph offers the reader a treatment of the theory of evolution PDEs with nonstandard growth conditions. This class includes parabolic and hyperbolic equations with variable or anisotropic nonlinear structure. We develop methods for the study of such equations and present a detailed account of recent results. An overview of other approaches to the study of PDEs of this kind is provided. The presentation is focused on the issues of existence and uniqueness of solutions in appropriate function spaces and on the study of the specific qualitative properties of solutions, such as localization in space and time, extinction in a finite time and blow-up, or nonexistence of global in time solutions. Special attention is paid to the study of the properties intrinsic to solutions of equations with nonstandard growth.
Book Synopsis Amorphous Polymers and Non-Newtonian Fluids by : Constantine Dafermos
Download or read book Amorphous Polymers and Non-Newtonian Fluids written by Constantine Dafermos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications AMORPHOUS POLYMERS AND NON-NEWTONIAN FLUIDS is in part the proceedings of a workshop which was an integral part of the 1984-85 IMA program on CONTINUUM PHYSICS AND PARTIAL DIFFERENTIAL EQUATIONS We are grateful to the Scientific Committee: Haim Brezis Constantine Dafermos Jerry Ericksen David Kinderlehrer for planning and implementing an exciting and stimulating year-long program. We espe cially thank the Program Organizers, Jerry Ericksen, David Kinderlehrer, Stephen Prager and Matthew Tirrell for organizing a workshop which brought together scientists and mathematicians in a variety of areas for a fruitful exchange of ideas. George R. Sell Hans Weinberger Preface Experiences with amorphous polymers have supplied much of the motivation for developing novel kinds of molecular theory, to try to deal with the more significant features of systems involving very large molecules with many degrees offreedom. Similarly, the observations of many unusual macroscopic phenomena has stimulated efforts to develop linear and nonlinear theories of viscoelasticity to describe them. In either event, we are confronted not with a well-established, specific set of equations, but with a variety of equations, conforming to a loose pattern and suggested by general kinds of reasoning. One challenge is to devise techniques for finding equations capable of delivering definite and reliable predictions. Related to this is the issue of discovering ways to better grasp the nature of solutions ofthose equations showing some promise.
Book Synopsis Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 by : Marco L. Bittencourt
Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 written by Marco L. Bittencourt and published by Springer. This book was released on 2017-11-07 with total page 681 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
Book Synopsis Lectures on Nonlinear Evolution Equations by : Reinhard Racke
Download or read book Lectures on Nonlinear Evolution Equations written by Reinhard Racke and published by Birkhäuser. This book was released on 2015-08-31 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behaviour of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial boundary value problems and for open questions are provided. In this second edition, initial-boundary value problems in waveguides are additionally considered.
Book Synopsis Analysis of Singularities for Partial Differential Equations by : Shuxing Chen
Download or read book Analysis of Singularities for Partial Differential Equations written by Shuxing Chen and published by World Scientific. This book was released on 2011 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a comprehensive overview on the theory on analysis of singularities for partial differential equations (PDEs). It contains a summarization of the formation, development and main results on this topic. Some of the author's discoveries and original contributions are also included, such as the propagation of singularities of solutions to nonlinear equations, singularity index and formation of shocks.
Book Synopsis Concentration Compactness for Critical Wave Maps by : Joachim Krieger
Download or read book Concentration Compactness for Critical Wave Maps written by Joachim Krieger and published by European Mathematical Society. This book was released on 2012 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave maps are the simplest wave equations taking their values in a Riemannian manifold $(M,g)$. Their Lagrangian is the same as for the scalar equation, the only difference being that lengths are measured with respect to the metric $g$. By Noether's theorem, symmetries of the Lagrangian imply conservation laws for wave maps, such as conservation of energy. In coordinates, wave maps are given by a system of semilinear wave equations. Over the past 20 years important methods have emerged which address the problem of local and global wellposedness of this system. Due to weak dispersive effects, wave maps defined on Minkowski spaces of low dimensions, such as $\mathbb R^{2+1}_{t,x}$, present particular technical difficulties. This class of wave maps has the additional important feature of being energy critical, which refers to the fact that the energy scales exactly like the equation. Around 2000 Daniel Tataru and Terence Tao, building on earlier work of Klainerman-Machedon, proved that smooth data of small energy lead to global smooth solutions for wave maps from 2+1 dimensions into target manifolds satisfying some natural conditions. In contrast, for large data, singularities may occur in finite time for $M =\mathbb S^2$ as target. This monograph establishes that for $\mathbb H$ as target the wave map evolution of any smooth data exists globally as a smooth function. While the authors restrict themselves to the hyperbolic plane as target the implementation of the concentration-compactness method, the most challenging piece of this exposition, yields more detailed information on the solution. This monograph will be of interest to experts in nonlinear dispersive equations, in particular to those working on geometric evolution equations.
Book Synopsis Ill-Posed Problems for Integrodifferential Equations in Mechanics and Electromagnetic Theory by : Frederick Bloom
Download or read book Ill-Posed Problems for Integrodifferential Equations in Mechanics and Electromagnetic Theory written by Frederick Bloom and published by SIAM. This book was released on 1981-10-01 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines initial-history boundary-value problems associated with systems of partial-integrodifferential equations arising in mechanics and electromagnetic theories.
Download or read book Nonlinear Waves written by Rentaro Agemi and published by . This book was released on 1997 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1972 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Partial Differential Equations by : Walter A. Strauss
Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Book Synopsis Nonlinear Waves by : Peter R. Popivanov
Download or read book Nonlinear Waves written by Peter R. Popivanov and published by World Scientific. This book was released on 2011 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Nate is the star goalie of his school's soccer team, and he is tasked with defending his goal and saving the day against Jefferson Middle School, their archrival.
Book Synopsis Asymptotic Methods for Wave and Quantum Problems by : M. V. Karasev
Download or read book Asymptotic Methods for Wave and Quantum Problems written by M. V. Karasev and published by American Mathematical Soc.. This book was released on 2003 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The collection consists of four papers in different areas of mathematical physics united by the intrinsic coherence of the asymptotic methods used. The papers describe both the known results and most recent achievements, as well as new concepts and ideas in mathematical analysis of quantum and wave problems. In the introductory paper ``Quantization and Intrinsic Dynamics'' a relationship between quantization of symplectic manifolds and nonlinear wave equations is described and discussed from the viewpoint of the weak asymptotics method (asymptotics in distributions) and the semiclassical approximation method. It also explains a hidden dynamic geometry that arises when using these methods. Three other papers discuss applications of asymptotic methods to the construction of wave-type solutions of nonlinear PDE's, to the theory of semiclassical approximation (in particular, the Whitham method) for nonlinear second-order ordinary differential equations, and to the study of the Schrodinger type equations whose potential wells are sufficiently shallow that the discrete spectrum contains precisely one point. All the papers contain detailed references and are oriented not only to specialists in asymptotic methods, but also to a wider audience of researchers and graduate students working in partial differential equations and mathematical physics.