Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Uncovering Bias In Machine Learning
Download Uncovering Bias In Machine Learning full books in PDF, epub, and Kindle. Read online Uncovering Bias In Machine Learning ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Interpretable Machine Learning by : Christoph Molnar
Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Book Synopsis Oxford Handbook of Ethics of AI by : Markus D. Dubber
Download or read book Oxford Handbook of Ethics of AI written by Markus D. Dubber and published by Oxford University Press. This book was released on 2020-06-30 with total page 1000 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume tackles a quickly-evolving field of inquiry, mapping the existing discourse as part of a general attempt to place current developments in historical context; at the same time, breaking new ground in taking on novel subjects and pursuing fresh approaches. The term "A.I." is used to refer to a broad range of phenomena, from machine learning and data mining to artificial general intelligence. The recent advent of more sophisticated AI systems, which function with partial or full autonomy and are capable of tasks which require learning and 'intelligence', presents difficult ethical questions, and has drawn concerns from many quarters about individual and societal welfare, democratic decision-making, moral agency, and the prevention of harm. This work ranges from explorations of normative constraints on specific applications of machine learning algorithms today-in everyday medical practice, for instance-to reflections on the (potential) status of AI as a form of consciousness with attendant rights and duties and, more generally still, on the conceptual terms and frameworks necessarily to understand tasks requiring intelligence, whether "human" or "A.I."
Book Synopsis Race After Technology by : Ruha Benjamin
Download or read book Race After Technology written by Ruha Benjamin and published by John Wiley & Sons. This book was released on 2019-07-09 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: From everyday apps to complex algorithms, Ruha Benjamin cuts through tech-industry hype to understand how emerging technologies can reinforce White supremacy and deepen social inequity. Benjamin argues that automation, far from being a sinister story of racist programmers scheming on the dark web, has the potential to hide, speed up, and deepen discrimination while appearing neutral and even benevolent when compared to the racism of a previous era. Presenting the concept of the “New Jim Code,” she shows how a range of discriminatory designs encode inequity by explicitly amplifying racial hierarchies; by ignoring but thereby replicating social divisions; or by aiming to fix racial bias but ultimately doing quite the opposite. Moreover, she makes a compelling case for race itself as a kind of technology, designed to stratify and sanctify social injustice in the architecture of everyday life. This illuminating guide provides conceptual tools for decoding tech promises with sociologically informed skepticism. In doing so, it challenges us to question not only the technologies we are sold but also the ones we ourselves manufacture. Visit the book's free Discussion Guide: www.dropbox.com
Book Synopsis Algorithms of Oppression by : Safiya Umoja Noble
Download or read book Algorithms of Oppression written by Safiya Umoja Noble and published by NYU Press. This book was released on 2018-02-20 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acknowledgments -- Introduction: the power of algorithms -- A society, searching -- Searching for Black girls -- Searching for people and communities -- Searching for protections from search engines -- The future of knowledge in the public -- The future of information culture -- Conclusion: algorithms of oppression -- Epilogue -- Notes -- Bibliography -- Index -- About the author
Book Synopsis Bias and Social Aspects in Search and Recommendation by : Ludovico Boratto
Download or read book Bias and Social Aspects in Search and Recommendation written by Ludovico Boratto and published by Springer Nature. This book was released on 2020-07-11 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes refereed proceedings of the First International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2020, held in April, 2020. Due to the COVID-19 pandemic BIAS 2020 was held virtually. The 10 full papers and 7 short papers were carefully reviewed and seleced from 44 submissions. The papers cover topics that go from search and recommendation in online dating, education, and social media, over the impact ofgender bias in word embeddings, to tools that allow to explore bias and fairnesson the Web.
Book Synopsis Big Data Processing with Apache Spark by : Srini Penchikala
Download or read book Big Data Processing with Apache Spark written by Srini Penchikala and published by Lulu.com. This book was released on 2018-03-13 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apache Spark is a popular open-source big-data processing framework thatÕs built around speed, ease of use, and unified distributed computing architecture. Not only it supports developing applications in different languages like Java, Scala, Python, and R, itÕs also hundred times faster in memory and ten times faster even when running on disk compared to traditional data processing frameworks. Whether you are currently working on a big data project or interested in learning more about topics like machine learning, streaming data processing, and graph data analytics, this book is for you. You can learn about Apache Spark and develop Spark programs for various use cases in big data analytics using the code examples provided. This book covers all the libraries in Spark ecosystem: Spark Core, Spark SQL, Spark Streaming, Spark ML, and Spark GraphX.
Book Synopsis Information Science and Applications (ICISA) 2016 by : Kuinam J. Kim
Download or read book Information Science and Applications (ICISA) 2016 written by Kuinam J. Kim and published by Springer. This book was released on 2016-02-15 with total page 1439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains selected papers from the 7th International Conference on Information Science and Applications (ICISA 2016) and provides a snapshot of the latest issues encountered in technical convergence and convergences of security technology. It explores how information science is core to most current research, industrial and commercial activities and consists of contributions covering topics including Ubiquitous Computing, Networks and Information Systems, Multimedia and Visualization, Middleware and Operating Systems, Security and Privacy, Data Mining and Artificial Intelligence, Software Engineering, and Web Technology. The contributions describe the most recent developments in information technology and ideas, applications and problems related to technology convergence, illustrated through case studies, and reviews converging existing security techniques. Through this volume, readers will gain an understanding of the current state-of-the-art information strategies and technologies of convergence security. The intended readers are researchers in academia, industry and other research institutes focusing on information science and technology.
Book Synopsis Gephi Cookbook by : Devangana Khokhar
Download or read book Gephi Cookbook written by Devangana Khokhar and published by Packt Publishing Ltd. This book was released on 2015-05-27 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you want to learn network analysis and visualization along with graph concepts from scratch, then this book is for you. This is ideal for those of you with little or no understanding of Gephi and this domain, but will also be beneficial for those interested in expanding their knowledge and experience.
Book Synopsis Behavior Analysis with Machine Learning Using R by : Enrique Garcia Ceja
Download or read book Behavior Analysis with Machine Learning Using R written by Enrique Garcia Ceja and published by CRC Press. This book was released on 2021-11-26 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Behavior Analysis with Machine Learning Using R introduces machine learning and deep learning concepts and algorithms applied to a diverse set of behavior analysis problems. It focuses on the practical aspects of solving such problems based on data collected from sensors or stored in electronic records. The included examples demonstrate how to perform common data analysis tasks such as: data exploration, visualization, preprocessing, data representation, model training and evaluation. All of this, using the R programming language and real-life behavioral data. Even though the examples focus on behavior analysis tasks, the covered underlying concepts and methods can be applied in any other domain. No prior knowledge in machine learning is assumed. Basic experience with R and basic knowledge in statistics and high school level mathematics are beneficial. Features: Build supervised machine learning models to predict indoor locations based on WiFi signals, recognize physical activities from smartphone sensors and 3D skeleton data, detect hand gestures from accelerometer signals, and so on. Program your own ensemble learning methods and use Multi-View Stacking to fuse signals from heterogeneous data sources. Use unsupervised learning algorithms to discover criminal behavioral patterns. Build deep learning neural networks with TensorFlow and Keras to classify muscle activity from electromyography signals and Convolutional Neural Networks to detect smiles in images. Evaluate the performance of your models in traditional and multi-user settings. Build anomaly detection models such as Isolation Forests and autoencoders to detect abnormal fish behaviors. This book is intended for undergraduate/graduate students and researchers from ubiquitous computing, behavioral ecology, psychology, e-health, and other disciplines who want to learn the basics of machine learning and deep learning and for the more experienced individuals who want to apply machine learning to analyze behavioral data.
Book Synopsis Biased by : Jennifer L. Eberhardt, PhD
Download or read book Biased written by Jennifer L. Eberhardt, PhD and published by Penguin. This book was released on 2019-03-26 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Poignant....important and illuminating."—The New York Times Book Review "Groundbreaking."—Bryan Stevenson, New York Times bestselling author of Just Mercy From one of the world’s leading experts on unconscious racial bias come stories, science, and strategies to address one of the central controversies of our time How do we talk about bias? How do we address racial disparities and inequities? What role do our institutions play in creating, maintaining, and magnifying those inequities? What role do we play? With a perspective that is at once scientific, investigative, and informed by personal experience, Dr. Jennifer Eberhardt offers us the language and courage we need to face one of the biggest and most troubling issues of our time. She exposes racial bias at all levels of society—in our neighborhoods, schools, workplaces, and criminal justice system. Yet she also offers us tools to address it. Eberhardt shows us how we can be vulnerable to bias but not doomed to live under its grip. Racial bias is a problem that we all have a role to play in solving.
Book Synopsis The Alignment Problem: Machine Learning and Human Values by : Brian Christian
Download or read book The Alignment Problem: Machine Learning and Human Values written by Brian Christian and published by W. W. Norton & Company. This book was released on 2020-10-06 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: A jaw-dropping exploration of everything that goes wrong when we build AI systems and the movement to fix them. Today’s “machine-learning” systems, trained by data, are so effective that we’ve invited them to see and hear for us—and to make decisions on our behalf. But alarm bells are ringing. Recent years have seen an eruption of concern as the field of machine learning advances. When the systems we attempt to teach will not, in the end, do what we want or what we expect, ethical and potentially existential risks emerge. Researchers call this the alignment problem. Systems cull résumés until, years later, we discover that they have inherent gender biases. Algorithms decide bail and parole—and appear to assess Black and White defendants differently. We can no longer assume that our mortgage application, or even our medical tests, will be seen by human eyes. And as autonomous vehicles share our streets, we are increasingly putting our lives in their hands. The mathematical and computational models driving these changes range in complexity from something that can fit on a spreadsheet to a complex system that might credibly be called “artificial intelligence.” They are steadily replacing both human judgment and explicitly programmed software. In best-selling author Brian Christian’s riveting account, we meet the alignment problem’s “first-responders,” and learn their ambitious plan to solve it before our hands are completely off the wheel. In a masterful blend of history and on-the ground reporting, Christian traces the explosive growth in the field of machine learning and surveys its current, sprawling frontier. Readers encounter a discipline finding its legs amid exhilarating and sometimes terrifying progress. Whether they—and we—succeed or fail in solving the alignment problem will be a defining human story. The Alignment Problem offers an unflinching reckoning with humanity’s biases and blind spots, our own unstated assumptions and often contradictory goals. A dazzlingly interdisciplinary work, it takes a hard look not only at our technology but at our culture—and finds a story by turns harrowing and hopeful.
Book Synopsis Machine Learning: Theory and Applications by :
Download or read book Machine Learning: Theory and Applications written by and published by Newnes. This book was released on 2013-05-16 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical learning and analysis techniques have become extremely important today, given the tremendous growth in the size of heterogeneous data collections and the ability to process it even from physically distant locations. Recent advances made in the field of machine learning provide a strong framework for robust learning from the diverse corpora and continue to impact a variety of research problems across multiple scientific disciplines. The aim of this handbook is to familiarize beginners as well as experts with some of the recent techniques in this field.The Handbook is divided in two sections: Theory and Applications, covering machine learning, data analytics, biometrics, document recognition and security. - Very relevant to current research challenges faced in various fields - Self-contained reference to machine learning - Emphasis on applications-oriented techniques
Book Synopsis Machine Learning Proceedings 1992 by : Peter Edwards
Download or read book Machine Learning Proceedings 1992 written by Peter Edwards and published by Morgan Kaufmann. This book was released on 2014-06-28 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Proceedings 1992
Author :National Academies of Sciences, Engineering, and Medicine Publisher :National Academies Press ISBN 13 :0309465052 Total Pages :69 pages Book Rating :4.3/5 (94 download)
Book Synopsis Envisioning the Data Science Discipline by : National Academies of Sciences, Engineering, and Medicine
Download or read book Envisioning the Data Science Discipline written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2018-03-05 with total page 69 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need to manage, analyze, and extract knowledge from data is pervasive across industry, government, and academia. Scientists, engineers, and executives routinely encounter enormous volumes of data, and new techniques and tools are emerging to create knowledge out of these data, some of them capable of working with real-time streams of data. The nation's ability to make use of these data depends on the availability of an educated workforce with necessary expertise. With these new capabilities have come novel ethical challenges regarding the effectiveness and appropriateness of broad applications of data analyses. The field of data science has emerged to address the proliferation of data and the need to manage and understand it. Data science is a hybrid of multiple disciplines and skill sets, draws on diverse fields (including computer science, statistics, and mathematics), encompasses topics in ethics and privacy, and depends on specifics of the domains to which it is applied. Fueled by the explosion of data, jobs that involve data science have proliferated and an array of data science programs at the undergraduate and graduate levels have been established. Nevertheless, data science is still in its infancy, which suggests the importance of envisioning what the field might look like in the future and what key steps can be taken now to move data science education in that direction. This study will set forth a vision for the emerging discipline of data science at the undergraduate level. This interim report lays out some of the information and comments that the committee has gathered and heard during the first half of its study, offers perspectives on the current state of data science education, and poses some questions that may shape the way data science education evolves in the future. The study will conclude in early 2018 with a final report that lays out a vision for future data science education.
Download or read book Digital Witness written by Sam Dubberley and published by . This book was released on 2020 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the developing field of open source research and discusses how to use social media, satellite imagery, big data analytics, and user-generated content to strengthen human rights research and investigations. The topics are presented in an accessible format through extensive use of images and data visualization.
Book Synopsis The Sense of an Ending by : Julian Barnes
Download or read book The Sense of an Ending written by Julian Barnes and published by Vintage. This book was released on 2011-10-05 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: BOOKER PRIZE WINNER • NATIONAL BESTSELLER • A novel that follows a middle-aged man as he contends with a past he never much thought about—until his closest childhood friends return with a vengeance: one of them from the grave, another maddeningly present. A novel so compelling that it begs to be read in a single setting, The Sense of an Ending has the psychological and emotional depth and sophistication of Henry James at his best, and is a stunning achievement in Julian Barnes's oeuvre. Tony Webster thought he left his past behind as he built a life for himself, and his career has provided him with a secure retirement and an amicable relationship with his ex-wife and daughter, who now has a family of her own. But when he is presented with a mysterious legacy, he is forced to revise his estimation of his own nature and place in the world.
Book Synopsis Why Good People Can't Get Jobs by : Peter Cappelli
Download or read book Why Good People Can't Get Jobs written by Peter Cappelli and published by University of Pennsylvania Press. This book was released on 2012-05-29 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: Peter Cappelli confronts the myth of the skills gap and provides an actionable path forward to put people back to work. Even in a time of perilously high unemployment, companies contend that they cannot find the employees they need. Pointing to a skills gap, employers argue applicants are simply not qualified; schools aren't preparing students for jobs; the government isn't letting in enough high-skill immigrants; and even when the match is right, prospective employees won't accept jobs at the wages offered. In this powerful and fast-reading book, Peter Cappelli, Wharton management professor and director of Wharton's Center for Human Resources, debunks the arguments and exposes the real reasons good people can't get hired. Drawing on jobs data, anecdotes from all sides of the employer-employee divide, and interviews with jobs professionals, he explores the paradoxical forces bearing down on the American workplace and lays out solutions that can help us break through what has become a crippling employer-employee stand-off. Among the questions he confronts: Is there really a skills gap? To what extent is the hiring process being held hostage by automated software that can crunch thousands of applications an hour? What kind of training could best bridge the gap between employer expectations and applicant realities, and who should foot the bill for it? Are schools really at fault? Named one of HR Magazine's Top 20 Most Influential Thinkers of 2011, Cappelli not only changes the way we think about hiring but points the way forward to rev America's job engine again.