Ultimate Data Engineering with Databricks

Download Ultimate Data Engineering with Databricks PDF Online Free

Author :
Publisher : Orange Education Pvt Ltd
ISBN 13 : 8196994788
Total Pages : 280 pages
Book Rating : 4.1/5 (969 download)

DOWNLOAD NOW!


Book Synopsis Ultimate Data Engineering with Databricks by : Mayank Malhotra

Download or read book Ultimate Data Engineering with Databricks written by Mayank Malhotra and published by Orange Education Pvt Ltd. This book was released on 2024-02-14 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Navigating Databricks with Ease for Unparalleled Data Engineering Insights. KEY FEATURES ● Navigate Databricks with a seamless progression from fundamental principles to advanced engineering techniques. ● Gain hands-on experience with real-world examples, ensuring immediate relevance and practicality. ● Discover expert insights and best practices for refining your data engineering skills and achieving superior results with Databricks. DESCRIPTION Ultimate Data Engineering with Databricks is a comprehensive handbook meticulously designed for professionals aiming to enhance their data engineering skills through Databricks. Bridging the gap between foundational and advanced knowledge, this book employs a step-by-step approach with detailed explanations suitable for beginners and experienced practitioners alike. Focused on practical applications, the book employs real-world examples and scenarios to teach how to construct, optimize, and maintain robust data pipelines. Emphasizing immediate applicability, it equips readers to address real data challenges using Databricks effectively. The goal is not just understanding Databricks but mastering it to offer tangible solutions. Beyond technical skills, the book imparts best practices and expert tips derived from industry experience, aiding readers in avoiding common pitfalls and adopting strategies for optimal data engineering solutions. This book will help you develop the skills needed to make impactful contributions to organizations, enhancing your value as data engineering professionals in today's competitive job market. WHAT WILL YOU LEARN ● Acquire proficiency in Databricks fundamentals, enabling the construction of efficient data pipelines. ● Design and implement high-performance data solutions for scalability. ● Apply essential best practices for ensuring data integrity in pipelines. ● Explore advanced Databricks features for tackling complex data tasks. ● Learn to optimize data pipelines for streamlined workflows. WHO IS THIS BOOK FOR? This book caters to a diverse audience, including data engineers, data architects, BI analysts, data scientists and technology enthusiasts. Suitable for both professionals and students, the book appeals to those eager to master Databricks and stay at the forefront of data engineering trends. A basic understanding of data engineering concepts and familiarity with cloud computing will enhance the learning experience. TABLE OF CONTENTS 1. Fundamentals of Data Engineering 2. Mastering Delta Tables in Databricks 3. Data Ingestion and Extraction 4. Data Transformation and ETL Processes 5. Data Quality and Validation 6. Data Modeling and Storage 7. Data Orchestration and Workflow Management 8. Performance Tuning and Optimization 9. Scalability and Deployment Considerations 10. Data Security and Governance Last Words Index

Data Pipelines Pocket Reference

Download Data Pipelines Pocket Reference PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492087807
Total Pages : 277 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Data Pipelines Pocket Reference by : James Densmore

Download or read book Data Pipelines Pocket Reference written by James Densmore and published by O'Reilly Media. This book was released on 2021-02-10 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting

Building the Data Lakehouse

Download Building the Data Lakehouse PDF Online Free

Author :
Publisher : Technics Publications
ISBN 13 : 9781634629669
Total Pages : 256 pages
Book Rating : 4.6/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Building the Data Lakehouse by : Bill Inmon

Download or read book Building the Data Lakehouse written by Bill Inmon and published by Technics Publications. This book was released on 2021-10 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: The data lakehouse is the next generation of the data warehouse and data lake, designed to meet today's complex and ever-changing analytics, machine learning, and data science requirements. Learn about the features and architecture of the data lakehouse, along with its powerful analytical infrastructure. Appreciate how the universal common connector blends structured, textual, analog, and IoT data. Maintain the lakehouse for future generations through Data Lakehouse Housekeeping and Data Future-proofing. Know how to incorporate the lakehouse into an existing data governance strategy. Incorporate data catalogs, data lineage tools, and open source software into your architecture to ensure your data scientists, analysts, and end users live happily ever after.

Beginning Apache Spark Using Azure Databricks

Download Beginning Apache Spark Using Azure Databricks PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484257812
Total Pages : 281 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Beginning Apache Spark Using Azure Databricks by : Robert Ilijason

Download or read book Beginning Apache Spark Using Azure Databricks written by Robert Ilijason and published by Apress. This book was released on 2020-06-11 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analyze vast amounts of data in record time using Apache Spark with Databricks in the Cloud. Learn the fundamentals, and more, of running analytics on large clusters in Azure and AWS, using Apache Spark with Databricks on top. Discover how to squeeze the most value out of your data at a mere fraction of what classical analytics solutions cost, while at the same time getting the results you need, incrementally faster. This book explains how the confluence of these pivotal technologies gives you enormous power, and cheaply, when it comes to huge datasets. You will begin by learning how cloud infrastructure makes it possible to scale your code to large amounts of processing units, without having to pay for the machinery in advance. From there you will learn how Apache Spark, an open source framework, can enable all those CPUs for data analytics use. Finally, you will see how services such as Databricks provide the power of Apache Spark, without you having to know anything about configuring hardware or software. By removing the need for expensive experts and hardware, your resources can instead be allocated to actually finding business value in the data. This book guides you through some advanced topics such as analytics in the cloud, data lakes, data ingestion, architecture, machine learning, and tools, including Apache Spark, Apache Hadoop, Apache Hive, Python, and SQL. Valuable exercises help reinforce what you have learned. What You Will Learn Discover the value of big data analytics that leverage the power of the cloudGet started with Databricks using SQL and Python in either Microsoft Azure or AWSUnderstand the underlying technology, and how the cloud and Apache Spark fit into the bigger picture See how these tools are used in the real world Run basic analytics, including machine learning, on billions of rows at a fraction of a cost or free Who This Book Is For Data engineers, data scientists, and cloud architects who want or need to run advanced analytics in the cloud. It is assumed that the reader has data experience, but perhaps minimal exposure to Apache Spark and Azure Databricks. The book is also recommended for people who want to get started in the analytics field, as it provides a strong foundation.

Spark: The Definitive Guide

Download Spark: The Definitive Guide PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491912294
Total Pages : 594 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Spark: The Definitive Guide by : Bill Chambers

Download or read book Spark: The Definitive Guide written by Bill Chambers and published by "O'Reilly Media, Inc.". This book was released on 2018-02-08 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation

97 Things Every Data Engineer Should Know

Download 97 Things Every Data Engineer Should Know PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492062383
Total Pages : 263 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis 97 Things Every Data Engineer Should Know by : Tobias Macey

Download or read book 97 Things Every Data Engineer Should Know written by Tobias Macey and published by "O'Reilly Media, Inc.". This book was released on 2021-06-11 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail

Data Management at Scale

Download Data Management at Scale PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492054739
Total Pages : 404 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Data Management at Scale by : Piethein Strengholt

Download or read book Data Management at Scale written by Piethein Strengholt and published by "O'Reilly Media, Inc.". This book was released on 2020-07-29 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption. Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed. Examine data management trends, including technological developments, regulatory requirements, and privacy concerns Go deep into the Scaled Architecture and learn how the pieces fit together Explore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata

Modern Data Engineering with Apache Spark

Download Modern Data Engineering with Apache Spark PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 9781484274514
Total Pages : 585 pages
Book Rating : 4.2/5 (745 download)

DOWNLOAD NOW!


Book Synopsis Modern Data Engineering with Apache Spark by : Scott Haines

Download or read book Modern Data Engineering with Apache Spark written by Scott Haines and published by Apress. This book was released on 2022-03-23 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage Apache Spark within a modern data engineering ecosystem. This hands-on guide will teach you how to write fully functional applications, follow industry best practices, and learn the rationale behind these decisions. With Apache Spark as the foundation, you will follow a step-by-step journey beginning with the basics of data ingestion, processing, and transformation, and ending up with an entire local data platform running Apache Spark, Apache Zeppelin, Apache Kafka, Redis, MySQL, Minio (S3), and Apache Airflow. Apache Spark applications solve a wide range of data problems from traditional data loading and processing to rich SQL-based analysis as well as complex machine learning workloads and even near real-time processing of streaming data. Spark fits well as a central foundation for any data engineering workload. This book will teach you to write interactive Spark applications using Apache Zeppelin notebooks, write and compile reusable applications and modules, and fully test both batch and streaming. You will also learn to containerize your applications using Docker and run and deploy your Spark applications using a variety of tools such as Apache Airflow, Docker and Kubernetes. ​Reading this book will empower you to take advantage of Apache Spark to optimize your data pipelines and teach you to craft modular and testable Spark applications. You will create and deploy mission-critical streaming spark applications in a low-stress environment that paves the way for your own path to production. ​ What You Will Learn Simplify data transformation with Spark Pipelines and Spark SQL Bridge data engineering with machine learning Architect modular data pipeline applications Build reusable application components and libraries Containerize your Spark applications for consistency and reliability Use Docker and Kubernetes to deploy your Spark applications Speed up application experimentation using Apache Zeppelin and Docker Understand serializable structured data and data contracts Harness effective strategies for optimizing data in your data lakes Build end-to-end Spark structured streaming applications using Redis and Apache Kafka Embrace testing for your batch and streaming applications Deploy and monitor your Spark applications Who This Book Is For Professional software engineers who want to take their current skills and apply them to new and exciting opportunities within the data ecosystem, practicing data engineers who are looking for a guiding light while traversing the many challenges of moving from batch to streaming modes, data architects who wish to provide clear and concise direction for how best to harness and use Apache Spark within their organization, and those interested in the ins and outs of becoming a modern data engineer in today's fast-paced and data-hungry world

Optimizing Databricks Workloads

Download Optimizing Databricks Workloads PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 180181192X
Total Pages : 230 pages
Book Rating : 4.8/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Optimizing Databricks Workloads by : Anirudh Kala

Download or read book Optimizing Databricks Workloads written by Anirudh Kala and published by Packt Publishing Ltd. This book was released on 2021-12-24 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accelerate computations and make the most of your data effectively and efficiently on Databricks Key FeaturesUnderstand Spark optimizations for big data workloads and maximizing performanceBuild efficient big data engineering pipelines with Databricks and Delta LakeEfficiently manage Spark clusters for big data processingBook Description Databricks is an industry-leading, cloud-based platform for data analytics, data science, and data engineering supporting thousands of organizations across the world in their data journey. It is a fast, easy, and collaborative Apache Spark-based big data analytics platform for data science and data engineering in the cloud. In Optimizing Databricks Workloads, you will get started with a brief introduction to Azure Databricks and quickly begin to understand the important optimization techniques. The book covers how to select the optimal Spark cluster configuration for running big data processing and workloads in Databricks, some very useful optimization techniques for Spark DataFrames, best practices for optimizing Delta Lake, and techniques to optimize Spark jobs through Spark core. It contains an opportunity to learn about some of the real-world scenarios where optimizing workloads in Databricks has helped organizations increase performance and save costs across various domains. By the end of this book, you will be prepared with the necessary toolkit to speed up your Spark jobs and process your data more efficiently. What you will learnGet to grips with Spark fundamentals and the Databricks platformProcess big data using the Spark DataFrame API with Delta LakeAnalyze data using graph processing in DatabricksUse MLflow to manage machine learning life cycles in DatabricksFind out how to choose the right cluster configuration for your workloadsExplore file compaction and clustering methods to tune Delta tablesDiscover advanced optimization techniques to speed up Spark jobsWho this book is for This book is for data engineers, data scientists, and cloud architects who have working knowledge of Spark/Databricks and some basic understanding of data engineering principles. Readers will need to have a working knowledge of Python, and some experience of SQL in PySpark and Spark SQL is beneficial.

Data Engineering with Python

Download Data Engineering with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1839212306
Total Pages : 357 pages
Book Rating : 4.8/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Data Engineering with Python by : Paul Crickard

Download or read book Data Engineering with Python written by Paul Crickard and published by Packt Publishing Ltd. This book was released on 2020-10-23 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key Features Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples Design data models and learn how to extract, transform, and load (ETL) data using Python Schedule, automate, and monitor complex data pipelines in production Book DescriptionData engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.What you will learn Understand how data engineering supports data science workflows Discover how to extract data from files and databases and then clean, transform, and enrich it Configure processors for handling different file formats as well as both relational and NoSQL databases Find out how to implement a data pipeline and dashboard to visualize results Use staging and validation to check data before landing in the warehouse Build real-time pipelines with staging areas that perform validation and handle failures Get to grips with deploying pipelines in the production environment Who this book is for This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required.

Frank Kane's Taming Big Data with Apache Spark and Python

Download Frank Kane's Taming Big Data with Apache Spark and Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1787288307
Total Pages : 289 pages
Book Rating : 4.7/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Frank Kane's Taming Big Data with Apache Spark and Python by : Frank Kane

Download or read book Frank Kane's Taming Big Data with Apache Spark and Python written by Frank Kane and published by Packt Publishing Ltd. This book was released on 2017-06-30 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Frank Kane's hands-on Spark training course, based on his bestselling Taming Big Data with Apache Spark and Python video, now available in a book. Understand and analyze large data sets using Spark on a single system or on a cluster. About This Book Understand how Spark can be distributed across computing clusters Develop and run Spark jobs efficiently using Python A hands-on tutorial by Frank Kane with over 15 real-world examples teaching you Big Data processing with Spark Who This Book Is For If you are a data scientist or data analyst who wants to learn Big Data processing using Apache Spark and Python, this book is for you. If you have some programming experience in Python, and want to learn how to process large amounts of data using Apache Spark, Frank Kane's Taming Big Data with Apache Spark and Python will also help you. What You Will Learn Find out how you can identify Big Data problems as Spark problems Install and run Apache Spark on your computer or on a cluster Analyze large data sets across many CPUs using Spark's Resilient Distributed Datasets Implement machine learning on Spark using the MLlib library Process continuous streams of data in real time using the Spark streaming module Perform complex network analysis using Spark's GraphX library Use Amazon's Elastic MapReduce service to run your Spark jobs on a cluster In Detail Frank Kane's Taming Big Data with Apache Spark and Python is your companion to learning Apache Spark in a hands-on manner. Frank will start you off by teaching you how to set up Spark on a single system or on a cluster, and you'll soon move on to analyzing large data sets using Spark RDD, and developing and running effective Spark jobs quickly using Python. Apache Spark has emerged as the next big thing in the Big Data domain – quickly rising from an ascending technology to an established superstar in just a matter of years. Spark allows you to quickly extract actionable insights from large amounts of data, on a real-time basis, making it an essential tool in many modern businesses. Frank has packed this book with over 15 interactive, fun-filled examples relevant to the real world, and he will empower you to understand the Spark ecosystem and implement production-grade real-time Spark projects with ease. Style and approach Frank Kane's Taming Big Data with Apache Spark and Python is a hands-on tutorial with over 15 real-world examples carefully explained by Frank in a step-by-step manner. The examples vary in complexity, and you can move through them at your own pace.

Data Engineering on Azure

Download Data Engineering on Azure PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1617298921
Total Pages : 334 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Data Engineering on Azure by : Vlad Riscutia

Download or read book Data Engineering on Azure written by Vlad Riscutia and published by Simon and Schuster. This book was released on 2021-08-17 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data

Machine Learning Engineering in Action

Download Machine Learning Engineering in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638356580
Total Pages : 879 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Engineering in Action by : Ben Wilson

Download or read book Machine Learning Engineering in Action written by Ben Wilson and published by Simon and Schuster. This book was released on 2022-05-17 with total page 879 pages. Available in PDF, EPUB and Kindle. Book excerpt: Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from concept to production. In Machine Learning Engineering in Action, you will learn: Evaluating data science problems to find the most effective solution Scoping a machine learning project for usage expectations and budget Process techniques that minimize wasted effort and speed up production Assessing a project using standardized prototyping work and statistical validation Choosing the right technologies and tools for your project Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you'll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks. Ben introduces his personal toolbox of techniques for building deployable and maintainable production machine learning systems. You'll learn the importance of Agile methodologies for fast prototyping and conferring with stakeholders, while developing a new appreciation for the importance of planning. Adopting well-established software development standards will help you deliver better code management, and make it easier to test, scale, and even reuse your machine learning code. Every method is explained in a friendly, peer-to-peer style and illustrated with production-ready source code. About the technology Deliver maximum performance from your models and data. This collection of reproducible techniques will help you build stable data pipelines, efficient application workflows, and maintainable models every time. Based on decades of good software engineering practice, machine learning engineering ensures your ML systems are resilient, adaptable, and perform in production. About the book Machine Learning Engineering in Action teaches you core principles and practices for designing, building, and delivering successful machine learning projects. You'll discover software engineering techniques like conducting experiments on your prototypes and implementing modular design that result in resilient architectures and consistent cross-team communication. Based on the author's extensive experience, every method in this book has been used to solve real-world projects. What's inside Scoping a machine learning project for usage expectations and budget Choosing the right technologies for your design Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices About the reader For data scientists who know machine learning and the basics of object-oriented programming. About the author Ben Wilson is Principal Resident Solutions Architect at Databricks, where he developed the Databricks Labs AutoML project, and is an MLflow committer.

The Definitive Guide to Azure Data Engineering

Download The Definitive Guide to Azure Data Engineering PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 9781484271810
Total Pages : 612 pages
Book Rating : 4.2/5 (718 download)

DOWNLOAD NOW!


Book Synopsis The Definitive Guide to Azure Data Engineering by : Ron C. L'Esteve

Download or read book The Definitive Guide to Azure Data Engineering written by Ron C. L'Esteve and published by Apress. This book was released on 2021-08-24 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build efficient and scalable batch and real-time data ingestion pipelines, DevOps continuous integration and deployment pipelines, and advanced analytics solutions on the Azure Data Platform. This book teaches you to design and implement robust data engineering solutions using Data Factory, Databricks, Synapse Analytics, Snowflake, Azure SQL database, Stream Analytics, Cosmos database, and Data Lake Storage Gen2. You will learn how to engineer your use of these Azure Data Platform components for optimal performance and scalability. You will also learn to design self-service capabilities to maintain and drive the pipelines and your workloads. The approach in this book is to guide you through a hands-on, scenario-based learning process that will empower you to promote digital innovation best practices while you work through your organization’s projects, challenges, and needs. The clear examples enable you to use this book as a reference and guide for building data engineering solutions in Azure. After reading this book, you will have a far stronger skill set and confidence level in getting hands on with the Azure Data Platform. What You Will Learn Build dynamic, parameterized ELT data ingestion orchestration pipelines in Azure Data Factory Create data ingestion pipelines that integrate control tables for self-service ELT Implement a reusable logging framework that can be applied to multiple pipelines Integrate Azure Data Factory pipelines with a variety of Azure data sources and tools Transform data with Mapping Data Flows in Azure Data Factory Apply Azure DevOps continuous integration and deployment practices to your Azure Data Factory pipelines and development SQL databases Design and implement real-time streaming and advanced analytics solutions using Databricks, Stream Analytics, and Synapse Analytics Get started with a variety of Azure data services through hands-on examples Who This Book Is For Data engineers and data architects who are interested in learning architectural and engineering best practices around ELT and ETL on the Azure Data Platform, those who are creating complex Azure data engineering projects and are searching for patterns of success, and aspiring cloud and data professionals involved in data engineering, data governance, continuous integration and deployment of DevOps practices, and advanced analytics who want a full understanding of the many different tools and technologies that Azure Data Platform provides

The Self-Service Data Roadmap

Download The Self-Service Data Roadmap PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492075205
Total Pages : 297 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis The Self-Service Data Roadmap by : Sandeep Uttamchandani

Download or read book The Self-Service Data Roadmap written by Sandeep Uttamchandani and published by "O'Reilly Media, Inc.". This book was released on 2020-09-10 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven insights are a key competitive advantage for any industry today, but deriving insights from raw data can still take days or weeks. Most organizations can’t scale data science teams fast enough to keep up with the growing amounts of data to transform. What’s the answer? Self-service data. With this practical book, data engineers, data scientists, and team managers will learn how to build a self-service data science platform that helps anyone in your organization extract insights from data. Sandeep Uttamchandani provides a scorecard to track and address bottlenecks that slow down time to insight across data discovery, transformation, processing, and production. This book bridges the gap between data scientists bottlenecked by engineering realities and data engineers unclear about ways to make self-service work. Build a self-service portal to support data discovery, quality, lineage, and governance Select the best approach for each self-service capability using open source cloud technologies Tailor self-service for the people, processes, and technology maturity of your data platform Implement capabilities to democratize data and reduce time to insight Scale your self-service portal to support a large number of users within your organization

Agile Data Warehouse Design

Download Agile Data Warehouse Design PDF Online Free

Author :
Publisher : DecisionOne Consulting
ISBN 13 : 0956817203
Total Pages : 330 pages
Book Rating : 4.9/5 (568 download)

DOWNLOAD NOW!


Book Synopsis Agile Data Warehouse Design by : Lawrence Corr

Download or read book Agile Data Warehouse Design written by Lawrence Corr and published by DecisionOne Consulting. This book was released on 2011-11 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Agile Data Warehouse Design is a step-by-step guide for capturing data warehousing/business intelligence (DW/BI) requirements and turning them into high performance dimensional models in the most direct way: by modelstorming (data modeling + brainstorming) with BI stakeholders. This book describes BEAM✲, an agile approach to dimensional modeling, for improving communication between data warehouse designers, BI stakeholders and the whole DW/BI development team. BEAM✲ provides tools and techniques that will encourage DW/BI designers and developers to move away from their keyboards and entity relationship based tools and model interactively with their colleagues. The result is everyone thinks dimensionally from the outset! Developers understand how to efficiently implement dimensional modeling solutions. Business stakeholders feel ownership of the data warehouse they have created, and can already imagine how they will use it to answer their business questions. Within this book, you will learn: ✲ Agile dimensional modeling using Business Event Analysis & Modeling (BEAM✲) ✲ Modelstorming: data modeling that is quicker, more inclusive, more productive, and frankly more fun! ✲ Telling dimensional data stories using the 7Ws (who, what, when, where, how many, why and how) ✲ Modeling by example not abstraction; using data story themes, not crow's feet, to describe detail ✲ Storyboarding the data warehouse to discover conformed dimensions and plan iterative development ✲ Visual modeling: sketching timelines, charts and grids to model complex process measurement - simply ✲ Agile design documentation: enhancing star schemas with BEAM✲ dimensional shorthand notation ✲ Solving difficult DW/BI performance and usability problems with proven dimensional design patterns Lawrence Corr is a data warehouse designer and educator. As Principal of DecisionOne Consulting, he helps clients to review and simplify their data warehouse designs, and advises vendors on visual data modeling techniques. He regularly teaches agile dimensional modeling courses worldwide and has taught dimensional DW/BI skills to thousands of students. Jim Stagnitto is a data warehouse and master data management architect specializing in the healthcare, financial services, and information service industries. He is the founder of the data warehousing and data mining consulting firm Llumino.

Azure Data Engineering Cookbook

Download Azure Data Engineering Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800201540
Total Pages : 455 pages
Book Rating : 4.8/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Azure Data Engineering Cookbook by : Ahmad Osama

Download or read book Azure Data Engineering Cookbook written by Ahmad Osama and published by Packt Publishing Ltd. This book was released on 2021-04-05 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 90 recipes to help you orchestrate modern ETL/ELT workflows and perform analytics using Azure services more easily Key FeaturesBuild highly efficient ETL pipelines using the Microsoft Azure Data servicesCreate and execute real-time processing solutions using Azure Databricks, Azure Stream Analytics, and Azure Data ExplorerDesign and execute batch processing solutions using Azure Data FactoryBook Description Data engineering is one of the faster growing job areas as Data Engineers are the ones who ensure that the data is extracted, provisioned and the data is of the highest quality for data analysis. This book uses various Azure services to implement and maintain infrastructure to extract data from multiple sources, and then transform and load it for data analysis. It takes you through different techniques for performing big data engineering using Microsoft Azure Data services. It begins by showing you how Azure Blob storage can be used for storing large amounts of unstructured data and how to use it for orchestrating a data workflow. You'll then work with different Cosmos DB APIs and Azure SQL Database. Moving on, you'll discover how to provision an Azure Synapse database and find out how to ingest and analyze data in Azure Synapse. As you advance, you'll cover the design and implementation of batch processing solutions using Azure Data Factory, and understand how to manage, maintain, and secure Azure Data Factory pipelines. You'll also design and implement batch processing solutions using Azure Databricks and then manage and secure Azure Databricks clusters and jobs. In the concluding chapters, you'll learn how to process streaming data using Azure Stream Analytics and Data Explorer. By the end of this Azure book, you'll have gained the knowledge you need to be able to orchestrate batch and real-time ETL workflows in Microsoft Azure. What you will learnUse Azure Blob storage for storing large amounts of unstructured dataPerform CRUD operations on the Cosmos Table APIImplement elastic pools and business continuity with Azure SQL DatabaseIngest and analyze data using Azure Synapse AnalyticsDevelop Data Factory data flows to extract data from multiple sourcesManage, maintain, and secure Azure Data Factory pipelinesProcess streaming data using Azure Stream Analytics and Data ExplorerWho this book is for This book is for Data Engineers, Database administrators, Database developers, and extract, load, transform (ETL) developers looking to build expertise in Azure Data engineering using a recipe-based approach. Technical architects and database architects with experience in designing data or ETL applications either on-premise or on any other cloud vendor who wants to learn Azure Data engineering concepts will also find this book useful. Prior knowledge of Azure fundamentals and data engineering concepts is needed.