Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Towards A New Evolutionary Computation
Download Towards A New Evolutionary Computation full books in PDF, epub, and Kindle. Read online Towards A New Evolutionary Computation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Towards a New Evolutionary Computation by : Jose A. Lozano
Download or read book Towards a New Evolutionary Computation written by Jose A. Lozano and published by Springer. This book was released on 2006-01-21 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimation of Distribution Algorithms (EDAs) are a set of algorithms in the Evolutionary Computation (EC) field characterized by the use of explicit probability distributions in optimization. Contrarily to other EC techniques such as the broadly known Genetic Algorithms (GAs) in EDAs, the crossover and mutation operators are substituted by the sampling of a distribution previously learnt from the selected individuals. EDAs have experienced a high development that has transformed them into an established discipline within the EC field. This book attracts the interest of new researchers in the EC field as well as in other optimization disciplines, and that it becomes a reference for all of us working on this topic. The twelve chapters of this book can be divided into those that endeavor to set a sound theoretical basis for EDAs, those that broaden the methodology of EDAs and finally those that have an applied objective.
Book Synopsis Introduction to Evolutionary Computing by : A.E. Eiben
Download or read book Introduction to Evolutionary Computing written by A.E. Eiben and published by Springer Science & Business Media. This book was released on 2007-08-06 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
Book Synopsis Evolutionary Computation by : David B. Fogel
Download or read book Evolutionary Computation written by David B. Fogel and published by John Wiley & Sons. This book was released on 2006-01-03 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Third Edition provides the latest tools and techniques that enable computers to learn The Third Edition of this internationally acclaimed publication provides the latest theory and techniques for using simulated evolution to achieve machine intelligence. As a leading advocate for evolutionary computation, the author has successfully challenged the traditional notion of artificial intelligence, which essentially programs human knowledge fact by fact, but does not have the capacity to learn or adapt as evolutionary computation does. Readers gain an understanding of the history of evolutionary computation, which provides a foundation for the author's thorough presentation of the latest theories shaping current research. Balancing theory with practice, the author provides readers with the skills they need to apply evolutionary algorithms that can solve many of today's intransigent problems by adapting to new challenges and learning from experience. Several examples are provided that demonstrate how these evolutionary algorithms learn to solve problems. In particular, the author provides a detailed example of how an algorithm is used to evolve strategies for playing chess and checkers. As readers progress through the publication, they gain an increasing appreciation and understanding of the relationship between learning and intelligence. Readers familiar with the previous editions will discover much new and revised material that brings the publication thoroughly up to date with the latest research, including the latest theories and empirical properties of evolutionary computation. The Third Edition also features new knowledge-building aids. Readers will find a host of new and revised examples. New questions at the end of each chapter enable readers to test their knowledge. Intriguing assignments that prepare readers to manage challenges in industry and research have been added to the end of each chapter as well. This is a must-have reference for professionals in computer and electrical engineering; it provides them with the very latest techniques and applications in machine intelligence. With its question sets and assignments, the publication is also recommended as a graduate-level textbook.
Book Synopsis Evolutionary Computation by : Kenneth A. De Jong
Download or read book Evolutionary Computation written by Kenneth A. De Jong and published by MIT Press. This book was released on 2006-02-03 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is an introduction to the field of evolutionary computation. It approaches evolution strategies and genetic programming, as instances of a more general class of evolutionary algorithms.
Author :Thomas Bartz-Beielstein Publisher :Springer Science & Business Media ISBN 13 :354032027X Total Pages :221 pages Book Rating :4.5/5 (43 download)
Book Synopsis Experimental Research in Evolutionary Computation by : Thomas Bartz-Beielstein
Download or read book Experimental Research in Evolutionary Computation written by Thomas Bartz-Beielstein and published by Springer Science & Business Media. This book was released on 2006-05-09 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the new experimentalism in evolutionary computation, providing tools to understand algorithms and programs and their interaction with optimization problems. It develops and applies statistical techniques to analyze and compare modern search heuristics such as evolutionary algorithms and particle swarm optimization. The book bridges the gap between theory and experiment by providing a self-contained experimental methodology and many examples.
Book Synopsis Towards a New Evolutionary Computation by : Jose A. Lozano
Download or read book Towards a New Evolutionary Computation written by Jose A. Lozano and published by Springer Science & Business Media. This book was released on 2006-01-12 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimation of Distribution Algorithms (EDAs) are a set of algorithms in the Evolutionary Computation (EC) field characterized by the use of explicit probability distributions in optimization. Contrarily to other EC techniques such as the broadly known Genetic Algorithms (GAs) in EDAs, the crossover and mutation operators are substituted by the sampling of a distribution previously learnt from the selected individuals. EDAs have experienced a high development that has transformed them into an established discipline within the EC field. This book attracts the interest of new researchers in the EC field as well as in other optimization disciplines, and that it becomes a reference for all of us working on this topic. The twelve chapters of this book can be divided into those that endeavor to set a sound theoretical basis for EDAs, those that broaden the methodology of EDAs and finally those that have an applied objective.
Book Synopsis Estimation of Distribution Algorithms by : Pedro Larrañaga
Download or read book Estimation of Distribution Algorithms written by Pedro Larrañaga and published by Springer Science & Business Media. This book was released on 2001-10-31 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is devoted to a new paradigm for evolutionary computation, named estimation of distribution algorithms (EDAs). This new class of algorithms generalizes genetic algorithms by replacing the crossover and mutation operators with learning and sampling from the probability distribution of the best individuals of the population at each iteration of the algorithm. Working in such a way, the relationships between the variables involved in the problem domain are explicitly and effectively captured and exploited. This text constitutes the first compilation and review of the techniques and applications of this new tool for performing evolutionary computation. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is clearly divided into three parts. Part I is dedicated to the foundations of EDAs. In this part, after introducing some probabilistic graphical models - Bayesian and Gaussian networks - a review of existing EDA approaches is presented, as well as some new methods based on more flexible probabilistic graphical models. A mathematical modeling of discrete EDAs is also presented. Part II covers several applications of EDAs in some classical optimization problems: the travelling salesman problem, the job scheduling problem, and the knapsack problem. EDAs are also applied to the optimization of some well-known combinatorial and continuous functions. Part III presents the application of EDAs to solve some problems that arise in the machine learning field: feature subset selection, feature weighting in K-NN classifiers, rule induction, partial abductive inference in Bayesian networks, partitional clustering, and the search for optimal weights in artificial neural networks. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is a useful and interesting tool for researchers working in the field of evolutionary computation and for engineers who face real-world optimization problems. This book may also be used by graduate students and researchers in computer science. `... I urge those who are interested in EDAs to study this well-crafted book today.' David E. Goldberg, University of Illinois Champaign-Urbana.
Book Synopsis Evolutionary Optimization Algorithms by : Dan Simon
Download or read book Evolutionary Optimization Algorithms written by Dan Simon and published by John Wiley & Sons. This book was released on 2013-06-13 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.
Book Synopsis Evolutionary Computation for Modeling and Optimization by : Daniel Ashlock
Download or read book Evolutionary Computation for Modeling and Optimization written by Daniel Ashlock and published by Springer Science & Business Media. This book was released on 2006-04-04 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concentrates on developing intuition about evolutionary computation and problem solving skills and tool sets. Lots of applications and test problems, including a biotechnology chapter.
Book Synopsis The Nature of Code by : Daniel Shiffman
Download or read book The Nature of Code written by Daniel Shiffman and published by No Starch Press. This book was released on 2024-09-03 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.
Book Synopsis Evolutionary Computation 1 by : Thomas Baeck
Download or read book Evolutionary Computation 1 written by Thomas Baeck and published by CRC Press. This book was released on 2018-10-03 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of evolutionary computation is expanding dramatically, fueled by the vast investment that reflects the value of applying its techniques. Culling material from the Handbook of Evolutionary Computation, Evolutionary Computation 1: Basic Algorithms and Operators contains up-to-date information on algorithms and operators used in evolutionary computing. This volume discusses the basic ideas that underlie the main paradigms of evolutionary algorithms, evolution strategies, evolutionary programming, and genetic programming. It is intended to be used by individual researchers, teachers, and students working and studying in this expanding field.
Book Synopsis Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation by : Samuelson Hong, Wei-Chiang
Download or read book Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation written by Samuelson Hong, Wei-Chiang and published by IGI Global. This book was released on 2013-03-31 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary computation has emerged as a major topic in the scientific community as many of its techniques have successfully been applied to solve problems in a wide variety of fields. Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation provides comprehensive research on emerging theories and its aspects on intelligent computation. Particularly focusing on breaking trends in evolutionary computing, algorithms, and programming, this publication serves to support professionals, government employees, policy and decision makers, as well as students in this scientific field.
Book Synopsis Theory of Evolutionary Computation by : Benjamin Doerr
Download or read book Theory of Evolutionary Computation written by Benjamin Doerr and published by Springer Nature. This book was released on 2019-11-20 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.
Book Synopsis Genetic and Evolutionary Computation by : Stephen L. Smith
Download or read book Genetic and Evolutionary Computation written by Stephen L. Smith and published by John Wiley & Sons. This book was released on 2011-07-26 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic and Evolutionary Computation: Medical Applications provides an overview of the range of GEC techniques being applied to medicine and healthcare in a context that is relevant not only for existing GEC practitioners but also those from other disciplines, particularly health professionals. There is rapidly increasing interest in applying evolutionary computation to problems in medicine, but to date no text that introduces evolutionary computation in a medical context. By explaining the basic introductory theory, typical application areas and detailed implementation in one coherent volume, this book will appeal to a wide audience from software developers to medical scientists. Centred around a set of nine case studies on the application of GEC to different areas of medicine, the book offers an overview of applications of GEC to medicine, describes applications in which GEC is used to analyse medical images and data sets, derive advanced models, and suggest diagnoses and treatments, finally providing hints about possible future advancements of genetic and evolutionary computation in medicine. Explores the rapidly growing area of genetic and evolutionary computation in context of its viable and exciting payoffs in the field of medical applications. Explains the underlying theory, typical applications and detailed implementation. Includes general sections about the applications of GEC to medicine and their expected future developments, as well as specific sections on applications of GEC to medical imaging, analysis of medical data sets, advanced modelling, diagnosis and treatment. Features a wide range of tables, illustrations diagrams and photographs.
Book Synopsis New Frontier In Evolutionary Algorithms: Theory And Applications by : Hitoshi Iba
Download or read book New Frontier In Evolutionary Algorithms: Theory And Applications written by Hitoshi Iba and published by Imperial College Press. This book was released on 2011-08-26 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delivers theoretical and practical knowledge of Genetic Algorithms (GA) for the purpose of practical applications. It provides a methodology for a GA-based search strategy with the integration of several Artificial Life and Artificial Intelligence techniques, such as memetic concepts, swarm intelligence, and foraging strategies. The development of such tools contributes to better optimizing methodologies when addressing tasks from areas such as robotics, financial forecasting, and data mining in bioinformatics.The emphasis of this book is on applicability to the real world. Tasks from application areas - optimization of the trading rule in foreign exchange (FX) and stock prices, economic load dispatch in power system, exit/door placement for evacuation planning, and gene regulatory network inference in bioinformatics - are studied, and the resultant empirical investigations demonstrate how successful the proposed approaches are when solving real-world tasks of great importance.
Book Synopsis Evolutionary Algorithms by : Alain Petrowski
Download or read book Evolutionary Algorithms written by Alain Petrowski and published by John Wiley & Sons. This book was released on 2017-04-24 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary algorithms are bio-inspired algorithms based on Darwin’s theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods. In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms. Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning.
Book Synopsis Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques by : Chis, Monica
Download or read book Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques written by Chis, Monica and published by IGI Global. This book was released on 2010-06-30 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques lays the foundation for the successful integration of evolutionary computation into software engineering. It surveys techniques ranging from genetic algorithms, to swarm optimization theory, to ant colony optimization, demonstrating their uses and capabilities. These techniques are applied to aspects of software engineering such as software testing, quality assessment, reliability assessment, and fault prediction models, among others, to providing researchers, scholars and students with the knowledge needed to expand this burgeoning application.